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A computational study of the reactivity of
rare-earth/phosphorus Lewis pairs toward
polymerization of conjugated polar alkenes†

Yanan Zhao, a Gen Luo, a,b Xin Xu, c Zhaomin Hou a,d and Yi Luo *a

The polymerization mechanism of methyl methacrylate (MMA) catalyzed by rare-earth/phosphorus (RE/P)

Lewis pairs has been systematically studied through density functional theory (DFT) calculations. Having

achieved an agreement between theory and experiment, it is found that the polymerization of MMA

mediated by intermolecular RE/P Lewis pairs mainly follows the bimetallic mechanism, while the mono-

metallic pathway could not be excluded in the case of a La analogue. In comparison with phenyl phos-

phorus as a Lewis base, the higher activity of cyclohexyl phosphorus toward MMA polymerization could

be ascribed to the electron-donation ability, rendering more electron flow in the addition reaction.

Besides, a computational modelling of analogous intramolecular RE/P systems indicates that the size of

the central metal and the length of the chain connecting Lewis pairs play an important role in the catalytic

activity.

Introduction

Polymers derived from conjugated polar monomers have
attracted much attention because an unsaturated bond and a
polar functional group remain in the polymer chain and thus
are capable of meeting specific applications or undergoing
further functionalization. Besides the radical and anionic
polymerization methods,1,2 the catalytic coordination inser-
tion3 and conjugate addition such as group-transfer polymeriz-
ation (GTP)4 and Lewis pair polymerization (LPP)5 are also
useful for the synthesis of such polymers. The former is
usually problematic in controllability, and transition-metal
catalyzed coordination insertion is known to suffer from poi-
soning by the functional group.3 In the context of conjugate

addition polymerization, LPP has attracted recent interest,
thanks to the cooperation between the Lewis acid and base in
chain initiation, propagation, and termination. In view of the
cooperative behavior in LPP, the polymerization activity could
be regulated by both the Lewis acid and Lewis base and thus
showed rich chemistry, as demonstrated by previous works.6

Since the first LPP work reported by Chen and coworkers in
2010,5a significant progress has been made in this field.5b–h In
Chen’s primary work, Al(C6F5)3-based Lewis pairs were demon-
strated to catalyze the polymerization of conjugated polar
alkenes and a high molecular weight polymerization product
was obtained. Hong7 and Zhang6,8 reported a series of main-
group FLP catalysts for the polymerization of a wide range of
conjugated polar monomers, some of which showed living and
controllable features. In spite of group 4 metal involved ion-
pair polymerization,9 transition-metal containing LPP is not
well established.10,11 Therefore, a highly active transition-metal
containing LPP system is still a worthy challenge, which could
be improved by modulation of Lewis acids and bases.

It is known that rare-earth metal complexes were reported
to not only mediate the synthesis of small molecules12,13b but
also catalyze the polymerizations of non-polar or polar
olefins.13 To regulate the acidity of Lewis acids in LPP, Xu et al.
developed intramolecular and intermolecular rare-earth/phos-
phorus (RE/P) Lewis pairs (Chart 1) for polymerizing conju-
gated polar monomers such as methyl methacrylate (MMA).14

Their works demonstrated that the polymerization activity is
significantly affected by rare-earth metals and Lewis bases.
The authors observed that La complex 3 showed higher activity
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than Sc analogue 2 and Lewis base PCy3 exhibited higher
activity compared with PPh3. However, the origin of such
activity discrepancy remained unclear.

A few theoretical mechanistic works on the mechanism of
MMA polymerization by main-group FLPs have been
documented.15–17 Chen and Cavallo at el. reported the calcu-
lations on the formation of the zwitterionic active species in
LPP of MMA and found that NHC-based zwitterions were more
stable compared with PR3-based analogues and the MMA
addition favorably followed the bimetallic pathway.15 They also
conducted mechanistic studies on the chain propagation and
termination of LPP of conjugated polar monomers catalyzed
by Al-based FLPs and found that intramolecular backbiting
cyclization might account for the chain-termination,16 being
in line with separate works by Lu et al.18 Taton and coworkers
computationally demonstrated a cooperative mechanism in
MMA polymerization catalyzed by a PR3/Me3SiNTf2 Lewis
pair.17 In spite of these mechanistic studies on the main-group
LPP, the theoretical study of such 1,4-conjugate addition
polymerization catalyzed by RE/P Lewis pairs, to the best our
knowledge, has not been reported to date.

Stimulated by our previous theoretical works on rare-earth
metal catalyzed polymerizations,19 we are interested in the
molecular-level factors governing the polymerization activity
observed in the RE/P systems, with the purpose of elucidating
the related reaction mechanism. It is generally considered
that, in the LPP, stronger acidity of the Lewis acid could
induce higher activity. Our primary calculation based on the
HSAB (hard and soft acids bases) principle and DFT indicates
that 2 has higher chemical hardness and thus stronger Lewis
acidity in comparison with 3 (0.20 vs. 0.16 eV).19c,20 However,
as aforementioned, the activity of 3 is higher than that of 2,14b

which drove us to explore the origin of such activity discre-
pancy. In the present work, DFT calculations have been con-
ducted for the intramolecular and intermolecular RE/P Lewis
pairs (Chart 1) toward the polymerization of MMA, which is a
commercially important and scientifically interesting com-
modity acrylic monomer. On the basis of the clarification of
the related polymerization mechanism, the origin of different
activity between Sc and La analogues and the effects of
different Lewis bases have been elucidated, which could

provide a piece of information for the development of LPP
systems.

Results and discussion
Polymerization mechanism

It is generally considered that FLP (frustrated Lewis pair)
mediated polymerization of conjugated polar alkenes follows
Michael addition to grow a polymer chain rather than coordi-
nation insertion or single electron transfer.15,16 In the case of
intramolecular Lewis pairs such as 1+ (Chart 1), as shown in
Fig. 1, the reaction starts with the coordination of monomer
MMA and then 1,4-addition (1acoor → 1aTS → 1a) could occur
to provide 1a with a newly formed P–C bond. While the incom-
ing monomer approaches the metal center of the active species
1a, the 1,4-addition reaction repeatedly takes place to form C–
C bonds and the polymerization could smoothly occur. Such a
C–C formation process has a moderate energy barrier
(19.6 kcal mol−1) and is exergonic (Fig. 1), suggesting a feasible
polymerization event.

In the case of the intermolecular RE/P Lewis pair (Chart 1),
the monometallic and bimetallic mechanisms have been con-
sidered, respectively. As shown in Fig. 2, starting with 2C, the
energy barrier for the monometallic mechanism (2TSde,
34.9 kcal mol−1, see Fig. S2 in the ESI† for the complete mono-
metallic pathway) is significantly higher than that for the bi-
metallic pathway (2TSDE, 20.2 kcal mol−1), showing a prefer-
ence for the bimetallic reaction manner. Although the
enchainment of the second MMA is slightly endergonic (con-
version of 2C to 2F), the addition of the third MMA is exergo-
nic (2F to 2H), suggesting an energetically favorable enchain-
ment process.

To obtain better understanding of the priority of the bi-
metallic mechanism, the distortion/interaction analyses21 have
been comparatively performed for the key transition states
2TSde and 2TSDE. During such analyses, the energies of the
monomer moiety and the remaining metal complex (two frag-
ments) in the TS geometries were evaluated via single-point
calculations. Such single-point energies of the fragments and
the energy of the TS were used to estimate the interaction

Chart 1 Rare-earth metal Lewis pairs reported for LPP.14
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energy ΔEint. These energies, together with the energies of the
respective fragments in their optimal geometry, allow for the
estimation of the deformation energies of the two fragments,
ΔEdef(cat.) and ΔEdef(mono.). As the energy of the TS, ΔETS, is
evaluated with respect to the energy of the two separated frag-
ments, the relation ΔETS = ΔEint + ΔEdef(cat.) + ΔEdef(mono.)
holds. As shown in Fig. 3, the total deformation energy ΔEdef
in 2TSde is 60.7 (12.8 + 47.9) kcal mol−1, which could be hardly
balanced out by its ΔEint (−12.3 kcal mol−1), leading to high
ΔETS of 48.4 kcal mol−1. However, the ΔEdef in 2TSDE (31.9 kcal
mol−1) is compensated by an interaction energy of −9.2 kcal
mol−1, leading to ΔETS = 22.7 kcal mol−1, which is lower than
that for 2TSde. As a consequence, the less steric hindrance
inducing smaller deformations of the metal complexes could

account for the higher stability of 2TSDE. A comparison of the
structures of the two transition states indicates that the C1–C2
distance in 2TSde is obviously shorter than that in 2TSDE (2.09
vs. 2.17 Å, Fig. 3), suggesting a more crowded environment at
the reaction center in 2TSde. This is also consistent with the
greater deformations in the 2TSde case.

Metal effect on catalyst activity

It was reported that different metal centers led to a significant
activity difference in the intermolecular FLP system.14b This
drove us to computationally compare the MMA addition
mediated by an analogous complex such as 3 (La complex)
with the same ligand as that in 2 (Sc complex, Chart 1). Like
the 2/PEt3 system, it is also found that, in the case of 3/PEt3,

Fig. 1 Computed energy profiles (M06(SMD)/6-311G**∩SDD//B3PW91/6-31G*∩SDD), see the ESI† for more details for 1+ mediated polymerization
of MMA (intramolecular RE/P systems). Free energies (kcal mol−1) are relative to isolated reactants.

Fig. 2 Computed energy profiles for 2/PEt3 mediated (intermolecular RE/P systems) bimetallic enchainment of MMA. Free energies (kcal mol−1) are
relative to isolated reactants.
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the bimetallic mechanism is both kinetically and thermo-
dynamically more favorable than the monometallic pathway
(Fig. 4 and S3†). However, the overall energy barrier of the
monometallic pathway is 16.1 kcal mol−1, which is not totally
insurmountable under experimental conditions (room temp-
erature). Besides, the monometal-mediated insertion process
of MMA tends to be exergonic in chain propagation (3f → 3i,
Fig. S3†). In view of this and the limited catalyst concentration,
the monometallic mechanisms could not be excluded in the 3/
PEt3 system. However, in the case of 2, the calculated energy

barrier for the monometallic mechanism is too high (34.9 kcal
mol−1) to be overcome under the experimental conditions.
Therefore, only the bimetallic mechanism works in the 2
involved system. On the other hand, in the favorable bimetallic
pathway, the overall energy barrier in the 3 catalyzed system is
significantly lower than that in the 2 mediated reaction (10.9
vs. 20.2 kcal mol−1, Fig. 4 and 2). This is in line with the experi-
mentally observed higher activity of 3 compared with 2.14b

To gain deeper insights into this activity difference between
2 and 3 in the bimetal mediated chain propagations, the

Fig. 3 (a) Distortion/interaction analyses (kcal mol−1) and geometric parameters (distances in Å) of (b) 2TSde and (c) 2TSDE.

Fig. 4 Computed energy profiles for the 3/PEt3 mediated (intermolecular RE/P systems) bimetallic pathway for MMA enchainment. Free energies
(kcal mol−1) are relative to isolated reactants.
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similar distortion/interaction analyses21 of the two C–C bond
forming transition states (2TSDE and 3TSDE, Fig. 2 and 4) were
performed. As shown in Fig. 5, although the interaction
between the two fragments in 3TSDE is weaker than that in
2TSDE (−8.7 vs. −9.2 kcal mol−1), the total deformation energy
of the former (13.0 + 6.2 = 19.2 kcal mol−1) is significantly
smaller than that of the latter (19.1 + 12.8 = 31.9 kcal mol−1),
which compensates for the less negative interaction energy in
3TSDE, and eventually makes this TS more stable (free energy
barrier of 5.9 vs. 20.2 kcal mol−1). These results suggest that the
steric factor (geometrical deformation) accounts for the lower
stability of 2TSDE. In order to compare the sterics around the
metal center in 2 and 3, the topographic steric maps were gener-
ated using the SambVca 2.0 web tool.22 When submitting an
optimized structure on the web page of SambVca 2.0 and select-
ing the center site, the buried volume can be therefore calcu-
lated, simultaneously generating a topographic steric map. As
expected, 3 had a lower percentage of buried volume in total (%
VBur, 52.0 vs. 61.5, Fig. 5b) because of the larger radius of La;
thus the relatively open enchainment environment in 3 could
account for its higher activity. On the other hand, the torsion

angle difference Δ∠C1C2C3P = 22.4° and Δ∠O5C6C5C4 = 14.2°
in 2TSDE is significantly larger than those in 3TSDE
(Δ∠C1C2C3P = 7.4° and Δ∠O5C6C5C4 = 2.1°, Fig. S4†). Such a
greater geometrical deformation in 2TSDE is also in line with
the result of interaction/distortion analysis, resulting in a
higher energy barrier and thus lower activity of the Sc complex.

Lewis base effect on polymerization activity

An experimental observation was noted that changing the sub-
stituents on the P atom in the Lewis base can also alter
polymerization activities.14b For instance, the replacement of
PEt3 with triphenylphosphine (PPh3) noticeably decreased the
activity. To understand the origin of such substituent effects,
the energy profiles for MMA polymerization initiated by 2 and
different bases R3P (R = Cy and Ph) were calculated. Following
the bimetallic mechanism, the effect of the Lewis base on the
polymerization activity is mainly reflected in the chain initiation
step; thus only the chain initiation process is considered here.

The computational results indicate that PCy3 as the Lewis
base induced a lower energy barrier in comparison with PPh3

(Fig. 6). In addition, PCy3 involved zwitterionic species beyond

Fig. 5 (a) Distortion/interaction analyses (kcal mol−1) of 3TSDE and 2TSDE; (b) topographical steric maps of catalysts 3 and 2.

Fig. 6 Transition states for MMA polymerization initiated by the 2/R3P pair (R = Cy and Ph). Free energies (kcal mol−1) are relative to isolated
reactants.
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the C–P bond formation transition state is more stable than
the case of PPh3 (PCy3: −5.3 kcal mol−1 vs. PPh3: 1.8 kcal
mol−1). This result is in agreement with the activity trend
experimentally observed. However, it remains a challenge to
provide a chemically meaningful explanation for the origin of
such a discrepancy in the activity. To obtain a piece of infor-
mation on such differences, similar distortion/interaction ana-
lyses were performed for the key transition states TS2Cy and
TS2Ph.

As shown in Fig. 7a, the two fragments (2C and 2A) are
highlighted in black and green, respectively. The activation
energy of each transition state (ΔETS) is decomposed into the
distortion energy (ΔEdef ) of the two reactive fragments and
the interaction energy (ΔEint) between the deformed two frag-
ments. In TS2Ph, the total distortion energy ΔEdef is 54.6 kcal
mol−1, which could be partially balanced out by its ΔEint
(−6.9 kcal mol−1) resulting in a ΔETS of 47.7 (54.6–6.9 = 47.7)
kcal mol−1. However, the total distortion energy (ΔEdef =
55.9 kcal mol−1) in TS2Cy can be largely compensated by an
interaction energy of −9.2 kcal mol−1, thus giving a lower
ΔETS (46.7 kcal mol−1). The distortion/interaction model ana-
lysis indicates that higher interaction energy could account
for the stability of TS2Cy in comparison with TS2Ph. To have a
better understanding of such an interaction accounting for
the relative stability of these two transition states, the
ETS-NOCV23 (extended transition state and natural orbitals
for chemical valence) calculations were performed by using

the Amsterdam density functional (ADF) package24 to dissect
the interaction energy (Fig. 7b). The interaction energy
(ΔE′int) between the deformed 2A and 2CCy can be further dis-
sected into Pauli repulsion (ΔEPauli), electrostatic interactions
(ΔEelstat), orbital interactions (ΔEorbital), and dispersion inter-
actions (ΔEdisp) (see computational methods in the ESI† for
details). Of these interactions, the electrostatic (ΔEelstat),
orbital (ΔEorbital), and dispersion (ΔEdisp) interactions are the
stabilizing factors, while the Pauli repulsion (ΔEPauli) is the
destabilizing factor. As shown in Fig. 7b, although the TS2Cy
is disfavored by Pauli repulsion compared with 2TSPh
(ΔΔEPauli = 112.3–98.9 = +13.4 kcal mol−1), it has stronger
attractive orbital interactions (ΔΔEorbital = −7.9 kcal mol−1)
and electrostatic interaction (ΔΔEelstat = −7.3 kcal mol−1)
between the 2A and 2C moieties. These results indicate that
the electronic properties of the Lewis base (PPh3 and PCy3)
can alter the electron-density of the CvC bond in the 2CCy

and 2CPh, as also suggested by the CHelpG atomic charge25

(charges from the electrostatic potential using a grid-based
method). As shown in Fig. 8a, the unsigned values of charge
on C1 and C3 in 2CPh are smaller than those in 2CCy,
suggesting an inductive effect of the Ph groups in 2CPh. This
could account for the lower reactivity of PPh3 as a Lewis base
because of the lower electron density on C1 atoms in com-
parison with PCy3 (−0.19 vs. −0.45), rendering more electron
flow during the 1,4-addition in the case of PCy3. On the other
hand, to gain a deeper understanding of the orbital inter-

Fig. 7 (a) Distortion/interaction model (kcal mol−1) and (b) energy decomposition analysis of TS2Cy and 2TSPh. ΔG‡ and ΔETS is calculated at the
level of B3PW91/6-31G(d) planted in the Gaussian 16 program.26 ΔE’int is dissected into chemically meaningful terms according to the ETS-NOCV
calculations at the level of B3LYP-D3/DZP planted in the Amsterdam density functional (ADF) package.24
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action, orbital analysis based on the NOCV approach was per-
formed, which could give useful information about the reor-
ganization of the electronic density in the transition states
through the electronic deformation density. Fig. 8b shows the
leading electronic deformation densities and the corres-
ponding energies for TS2Cy and 2TSPh. It is indicated that the
ΔEorbital energy of TS2Cy (−47.8 kcal mol−1) is more negative
than that of 2TSPh (−40.2 kcal mol−1). The charge flow from
2CCy (red region) to 2A (blue region) in TS2Cy is also more

evident than that in 2TSPh. Therefore, different Lewis bases
could influence the electronic population in the intermediate
such as 2C and further affect the stability of the addition
reaction transition state. In order to further explore the regu-
lation effect of the Lewis base, the hydroxyl (electron-donat-
ing group) substituted phenyls have been modelled (Fig. 8a).
As expected, the calculated CHelpG charge on C1 changed
from −0.19 to −0.32 and the addition reaction energy barrier
reduced from 30.8 to 26.5 kcal mol−1.

Fig. 8 (a) CHelpG atomic charge25 in 2A, 2CPh, 2CCy and 2CPh–OH; (b) leading deformation densities and corresponding energies for TS2Ph and
2TSCy. The red color denotes charge depletion and the blue color represents charge accumulation (|Δρ| = 0.004 a.u. for all the density surfaces).
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Catalyst modification

Inspired by the aforementioned calculation results, we specu-
lated that it should be possible to improve the activity by modi-
fying ligands in the intramolecular RE/P system.14a As afore-
mentioned, the P–C bond formation is not the rate determin-
ing step (Fig. 1), which was not considered here. As shown in
Table 1, on the basis of original catalyst 1, appropriate substi-
tuent alteration has no significant effect on the MMA enchain-
ment energy barrier (ΔG‡

TSbc, cat. 1, 4–7). Interestingly, when
the number of bridging methylenes increased to 2, the energy
barrier decreased (ΔG‡

1 = 19.6 vs. ΔG‡
8 = 17.2 kcal mol−1).

Besides, when the metal Sc is changed to La, the energy
barrier obviously decreased by 6.3 kcal mol−1 (ΔG‡

1 = 19.6 vs.
ΔG‡

9 = 13.3 kcal mol−1). These results suggest that the proper
flexibility of the arm bridging intramolecular Lewis pair and
larger-sized metal could be beneficial to the addition of MMA.

Conclusions

In summary, the origin of activity difference in the polymeriz-
ation of methyl methacrylate (MMA) catalyzed by various rare-
earth/phosphorus Lewis pairs (RE/P), via Michael addition,
has been computationally elucidated. The calculated energy
landscapes indicate that the intramolecular RE/P mediated
MMA polymerization is a significant exergonic process and
features a moderate energy barrier. In the case of inter-
molecular RE/P, the bimetallic mechanism is kinetically pre-
ferable over the monometallic pathway. Unlike the Sc(OAr)3/
PEt3 (Ar = 2,6-tBu2-C6H3) Lewis pair, however, the La analogue
may also follow a monometallic mechanism in view of limited
catalyst concentration and surmountable enchainment energy
barrier. The detailed structure and energy analyses disclosed
that geometrical deformation required for achieving the
enchainment transition state mainly accounts for the activity
discrepancy of the rare-earth metal complex as a Lewis acid in

the intermolecular RE/P system. Meanwhile, given the same
Lewis acid, the observed activity difference of various PR3

Lewis bases (R = Cy and Ph) could be ascribed to the electronic
induction effect of the R group. Namely, the R group with
stronger electron donation ability could increase the electron
density on the reactive vinyl group and render more electron
flow during the Michael addition, resulting in higher activity
in comparison with the electron withdrawing group, which is
in line with the experimentally observed activity trend.
Besides, further computational modellings on a series of intra-
molecular RE/P catalysts indicate that increasing the radius of
the central metal or the flexibility of the bridge connecting
Lewis pair in the catalyst is beneficial to improving catalytic
activity. These theoretical results are expected to be useful for
the design of a more efficient RE/P polymerization system.
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