Issue 3, 2020

Co-encapsulation of slow release compounds and Rhodococcus rhodochrous ATCC 21198 in gellan gum beads to promote the long-term aerobic cometabolic transformation of 1,1,1-trichloroethane, cis-1,2-dichloroethene and 1,4-dioxane

Abstract

Rhodococcus rhodochrous ATCC 21198 (strain ATCC 21198) was successfully co-encapsulated in gellan gum beads with orthosilicates as slow release compounds (SRCs) to support aerobic cometabolism of a mixture of 1,1,1-trichloroethane (1,1,1-TCA), cis-1,2-dichloroethene (cis-DCE), and 1,4-dioxane (1,4-D) at aqueous concentrations ranging from 250 to 1000 μg L−1. Oxygen (O2) consumption and carbon dioxide (CO2) production showed the co-encapsulated cells utilized the alcohols that were released from the co-encapsulated SRCs. Two model SRCs, tetrabutylorthosilicate (TBOS) and tetra-s-butylorthosilicate (T2BOS), which hydrolyze to produce 1- and 2-butanol, respectively, were encapsulated in gellan gum (GG) at mass loadings as high as 10% (w/w), along with strain ATCC 21198. In the GG encapsulated beads, TBOS hydrolyzed 26 times faster than T2BOS and rates were ∼4 times higher in suspension than when encapsulated. In biologically active reactors, the co-encapsulated strain ATCC 21198 effectively utilized the SRC hydrolysis products (1- and 2-butanol) and cometabolized repeated additions of a mixture of 1,1,1-TCA, cis-DCE, and 1,4-D for over 300 days. The transformation followed pseudo-first-order kinetics. Vinyl chloride (VC) and 1,1-dichloroethene (1,1-DCE) were also transformed in the reactors after 250 days. In the long-term treatment, the batch reactors with co-encapsulated T2BOS GG beads achieved similar transformation rates, but at much lower O2 consumption rates than those with TBOS. The results demonstrate that the co-encapsulation technology can be a passive method for the cometabolic treatment of dilute groundwater plumes.

Graphical abstract: Co-encapsulation of slow release compounds and Rhodococcus rhodochrous ATCC 21198 in gellan gum beads to promote the long-term aerobic cometabolic transformation of 1,1,1-trichloroethane, cis-1,2-dichloroethene and 1,4-dioxane

Supplementary files

Article information

Article type
Paper
Submitted
26 Des 2019
Accepted
10 Feb 2020
First published
11 Feb 2020

Environ. Sci.: Processes Impacts, 2020,22, 771-791

Author version available

Co-encapsulation of slow release compounds and Rhodococcus rhodochrous ATCC 21198 in gellan gum beads to promote the long-term aerobic cometabolic transformation of 1,1,1-trichloroethane, cis-1,2-dichloroethene and 1,4-dioxane

M. T. Rasmussen, A. M. Saito, M. R. Hyman and L. Semprini, Environ. Sci.: Processes Impacts, 2020, 22, 771 DOI: 10.1039/C9EM00607A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements