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As the Cambridge Structural Database reaches a record number of one million deposited structures in

2019, the metal–organic frameworks (MOFs) community sees its own pool of synthesised structures

continue to grow to almost 100000 entries. The increasing number of MOFs being synthesised paved

the way to an entire computational research field based on high-throughput screenings in order to i)

find the best structure for a given application, ii) uncover structure–property trends to guide

experimentalists towards a more rational design of MOFs. In this sense, the CSD has become a treasure

trove in which computational researchers are trying to find the most relevant data. However, the wealth

of information and possibilities combined with the lack of guidelines can be overwhelming and

misleading, for new and experienced researchers in the field alike. In this tutorial review, we aim to look

at the different ways the CSD has been used so far by the community, to present the most useful tools

for efficient exploration of the CSD for MOFs applications and the future possible developments to

further enhance the discovery of MOFs.

1. Introduction

Metal–organic frameworks (MOFs) have gained much attention
in the last two decades in the nanoporous materials community
and are now one of the fastest-growing subsets of extended
structures.1–6 Although the nature of MOFs is still debated and
remains to be more clearly defined,7–9 they are usually
described as a class of crystalline materials assembled from
metal atoms or clusters (secondary building units or SBUs) and
organic ligands in a ‘building block’ approach.10 The relatively
straightforward synthesis of MOFs and the diverse possible
combinations of SBUs and ligands have led to the design of ever
more customised structures. Their pores span a range of sizes
(from micro- to mesoporous), geometries, internal surface areas
(as high as 8000 m2 g−1 vs. 1000 m2 g−1 for zeolites and 3500
m2 g−1 for activated carbons)11 and void fractions. These
properties have encouraged researchers to consider MOFs for a
wide variety of applications, ranging from gas storage,12–16

separation,17–21 catalysis22–24 to drug delivery25–29 and bio-
imaging.26,27,30 The number of structures published and
deposited in the Cambridge Structural Database (CSD) has thus

also significantly increased. In 2017, our group developed in
collaboration with the Cambridge Crystallographic Data Centre
(CCDC) the first regularly and automatically updated CSD MOF
subset.7 At the time of its publication, there was ca. 70000
MOFs in this database. By August 2019, this number had
reached 96000, meaning almost 1000 new structures per
month. This huge amount of data creates interesting
opportunities for materials discovery, whether it is to find the
best existing structure for a given application or to uncover
interesting structure–property trends that can guide researchers
towards a more rational design of new MOFs.

Our previous work7 led to the release of a package of tools
for the exploration of MOFs in the CSD: we developed the
CSD MOF subset, a non-disordered MOF subset and Python
scripts for the removal of the bound and unbound solvent,
for users to apply on their desired subset. We also detailed
our methods, based entirely on CSD tools, and encouraged
MOF scientists to use them for their own research. We have
realised, however, that these tools might not seem very
intuitive to researchers who are new in the field or not
familiar with all the available possibilities provided by the
CCDC. In addition, the lack of guidelines on these tools and
the sharing of methods has led to misleading or
irreproducible results. This tutorial review highlights the
different ways the CSD has been explored by MOF
researchers, further explains some essential CSD data
concepts, provides tips on how to use the CSD tools for a
better, reproducible exploration of the MOF subset and

7152 | CrystEngComm, 2020, 22, 7152–7161 This journal is © The Royal Society of Chemistry 2020

a Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical

Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive,

Cambridge CB3 0AS, UK. E-mail: df334@cam.ac.uk
b The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, UK

† Electronic supplementary information (ESI) available. See DOI: 10.1039/
d0ce00299b

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ju

ni
 2

02
0.

 D
ow

nl
oa

de
d 

on
 1

5/
05

/2
02

5 
14

:5
9:

27
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/d0ce00299b&domain=pdf&date_stamp=2020-11-05
http://orcid.org/0000-0001-8298-3992
http://orcid.org/0000-0002-1472-6852
http://orcid.org/0000-0001-7983-1859
http://orcid.org/0000-0002-5013-1194
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0ce00299b
https://pubs.rsc.org/en/journals/journal/CE
https://pubs.rsc.org/en/journals/journal/CE?issueid=CE022043


CrystEngComm, 2020, 22, 7152–7161 | 7153This journal is © The Royal Society of Chemistry 2020

finally gives a quick overview on current data issues the
computational MOF community is faced with. We will
particularly focus on the CCDC software Mercury and
ConQuest,31 and the CSD application programming interface
(API),32 for single structure and high-throughput search and
analyses. Mercury is the main CCDC software for visualising,
exploring and analysing structures one at a time, and
ConQuest, the primary structures search software. Both are
presented with a graphical user interface (GUI) and can be
used with simple click-and-drag actions. The CSD Python API
uses a command-line interface and requires a little
familiarity with Python. While Mercury is only able to
perform actions on single structures, the API is able to do the
same in a high-throughput manner. We will provide guidance
on the effective use of these tools later on in this review. We
hope the tips given here will be helpful for experimentalist
and computational MOF scientists alike.

2. Single MOF analysis – Polymer
Expansions with Mercury

Mercury offers a wide range of possibilities for the analysis of a
single structure, such as powder diffraction patterns,
visualisation of void space, measure of distances and angles,
etc. The full list of capabilities can be found in the Help section
of the software or online.33 We will here focus on the Polymer
Expansion functionality, a particularly useful way to visualise
MOFs. As extended structures, only a repeating unit (RU) is

used to represent MOFs in the CSD. Therefore, several
expansions of this RU are necessary to form the final
framework. Extended structures are defined in the CCDC with
‘polymeric’ bonds, the type of bond that connects RUs. These
bonds are represented in a zig-zag shape in a 2D-diagram, or
labelled as ‘Po’ in the Mercury visualiser (see Fig. 1a and c). The
2020.0 release of Mercury (version 4.3.0) also enables the
identification of polymeric bonds from any CIF files read into
the software, or from any disordered CSD entry where bond
types were not previously assigned. To identify polymeric bonds
from such structures, go to Edit > Auto Edit Structure and make
sure the Identify polymeric bonds box is ticked. To perform a
Polymer Expansion, simply go to Edit > Polymer Expansion. In
the pop-up window, you can either expand all the polymeric
bonds (click on Expand All) or only specific ones by ticking
Expand at selection and clicking on the desired polymeric bond.
Tick the ‘Po’ label on polymeric bonds option to visualise their
position in the structure. It is also possible to reverse back to a
smaller structure by ticking Prune at selection and clicking on
the polymeric bond. Fig. 1b and d give an example of the
structures obtained with one or more polymer expansion.

3. Digging into the CSD for MOFs
with ConQuest

ConQuest offers a wide range of search possibilities, from
drawing a fragment of a targeted structure, to specifying its
space group, and from combining different search queries to

Fig. 1 Example of polymeric expansion in MOF-5 (CSD refcode: SAHYIK) in Mercury. a. Chemical diagram: the zig-zag lines are the polymeric
bonds, the dotted lines are aromatic bonds. b. The expanded structure after several polymer expansions. c. The repeating unit with polymeric
bonds labelled as ‘Po’. d. The structure after expanding the polymeric bonds circled in c. A 3D representation of SAHYIK is given in Fig. 3b.
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combining different search results. It can be used to find one
specific structure, but also a subset of structures – such as
MOFs. As early as in 2004, Ockwig et al. endeavoured to
classify MOFs in the CSD according to their respective
topologies.34 An older version of the software, Quest, was then
used to carry out a string search, which returned 1127 three-
periodic MOFs. However, no further details on the exact
strings were given.

Given the amount of data, the growing toolbox of
computational chemistry35 and the computational power
available today, virtual high-throughput screenings (HTS)
have become an emerging approach for scientists interested
in materials discovery. Amongst the properties that can be
calculated in a reasonable amount of time – from a few
seconds to several hours per structure – are a structure's
properties calculated using geometrical approaches or

Fig. 2 Organisation of the MOF data in the CSD.

Fig. 3 Example of two different ways of representing carboxylate ligands: a. chemical diagram of SAHYIK, b. 3D representation of SAHYIK, c.
chemical diagram of ADUROI and d. 3D representation of ADUROI.
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obtained with classical simulations. Typical textural
properties (largest cavity diameter, pore limiting diameter,
void fraction, surface area and density) can be obtained with
open-source software packages such as Zeo++36 or
PoreBlazer.37 Physical properties related to the adsorption of
molecules inside MOFs can be obtained with algorithms
based on statistical thermodynamics using Monte Carlo
techniques.38 High-throughput ab initio molecular dynamics
and quantum mechanical calculations are also becoming
more accessible, though they still require significant
computational time. Regardless of the type of simulations, it
is necessary to prepare a dataset of structures to run through.

Several research groups published their methods for the
extraction of a dataset of experimental and already
synthesised MOFs.39–41 Since most research groups focused
on gas adsorption applications, the selected structures were
‘porous’ 3D MOFs; the porosity being defined differently by
each research group. All the MOF structures were extracted
from the CSD, before further data filtering, processing and
cleaning in order to prepare them for simulations. Among
the most common data processing steps are bound and/or
unbound solvent removal, the addition of missing hydrogens
and elimination or repair of disordered structures. Watanabe
et al. extracted 30 000 MOFs from the CSD, although no
details were given regarding the selection of MOFs from the
CSD.39 Later on, Goldsmith et al. used a set of labelled MOFs
and an algorithm to determine the features that indicate if a
structure is a MOF.40 Based on these features, they extracted
38 800 structures using unspecified CSD tools. Chung et al.
developed the computation-ready, experimental (CoRE) MOF
database, the first publicly available database of MOFs; in
2019, the CoRE MOF database was updated to contain over
14 000 curated structures.41,42 The selection of structures
from the CSD used ConQuest and their own definition of a
MOF. A subset of the CoRE MOF database was further
optimised with density functional theory methods.43 Users
should be aware that, although a significant number of
structures from the CoRE MOF database still have their
original CSD refcode, they have been modified to be
simulation-ready. Most recently, we developed the CSD MOF
subset using criteria drawn in ConQuest to capture MOFs
and MOF-like structures.7 Conversely to the previous
datasets, the CSD MOF subset was designed to be of use to
researchers working on applications that are not restricted to
gas adsorption. The subset thus contains 1D, 2D and 3D
MOFs that do not necessarily have any apparent porosity.
These criteria are implemented in the CSD as a filter so that
the dataset is automatically updated, along with the quarterly
CSD updates. These criteria are also very flexible and can be
easily tailored to better fit the evolution of the definition of
MOFs.7,8 The structures in the CSD MOF subset are the
original data as-deposited and curated by the CCDC.

The recent efforts in the development of MOF databases
have spread the use of HTS on MOFs for a wide variety of gas
adsorption applications. The subset obtained by Watanabe
et al. for instance was further processed and analysed before

retaining 359 MOFs for the simulation of CO2/N2 separation
with grand canonical Monte Carlo.39 These materials were
then ranked for their separation performance. Goldsmith
et al. used their subsets to determine the theoretical limits of
hydrogen storage in MOFs, by correlating the structures'
surface area and the hydrogen excess uptakes.40 The
assignment of density-derived electrostatic and chemical
(DDEC)44,45 charges to structures from the CoRE MOF
database enabled simulations where electrostatic interactions
play a major role. Using the DDEC database, Moghadam
et al. found the best existing candidate for oxygen storage,
UMCM-152.46 This structure was then synthesised and its
uptake experimentally confirmed to be 22.5% higher than
the previously best-performing structure reported in the
literature. In addition to identifying the best candidate for a
given application, more efforts are now put towards mapping
the landscape of MOFs' properties. Along with the (re)
discovery of UMCM-152, Moghadam et al. published an
online interactive data explorer where users can plot all the
available textural and adsorption properties in order to spot
interesting structure–property trends and potential structures
of interest. The observations made from this visualisation
can highlight interesting structural behaviours and guide
researchers towards a more rational design of MOFs. Very
recently, Boyd et al. used such data mining and visualisation
methods to design two MOFs with higher wet flue gas CO2/N2

selectivity than available commercial materials.47

4. Which database to use?

The availability of two easily accessible databases – CoRE
MOF and the CSD MOF subset – have sparked questions
among computational researchers: which database should be
used? How different are they? What kind of impact will one
database or another have on the final simulated results?
Altintas et al. reported the comparison of the two databases
(CoRE MOF version 2014 and non-disordered CSD MOF
subset version 5.37 May 2016, where the authors also
removed solvents using the provided Python script) in the
case of 3D MOFs for methane and hydrogen adsorption.48

Among the 3490 structures in common in the two datasets,
387 differed significantly in the final gas uptakes. These
differences stem from the different modifications the original
data underwent during the cleaning process in both
databases. The authors went on to compare the uptake
obtained in both cases to the actually measured uptake from
the original papers. According to this study, neither database
is in perfect agreement with reported experimental results.
However, the exact changes applied to the original CSD CIF
files were also not made clear for the comparison of these
two datasets. Although the nature of the modifications made
on the original CSD data to obtain CoRE MOF is known, it is
difficult to understand what exactly has been modified from
the final CIF file and the impact of these changes on the
simulated uptake. Similarly, although the provided Python
script for the removal of bound and unbound solvent was
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used on the CSD MOF subset, it is unclear on which subsets
of structures it was run for this comparison. As we and others
highlight and insist, researchers should be extremely careful
when removing bound solvents, as the MOFs' structural
integrity might be impacted, resulting in unrealistic
simulated uptakes and selectivities.7,49

To overcome the issue of reproducibility, a trackable
workflow such as the automated interactive infrastructure
and database for computational science (AiiDA) could be
helpful.50 Ongari et al. recently demonstrated the use of
AiiDA on a database of CURATED (clean, uniform, and
refined with automatic tracking from experimental database)
covalent-organic frameworks (COFs).51 The workflow and
results obtained at each stage are available online on the
Materials Cloud platform.50 Though promising,
implementing such a workflow will need significant effort
from the computational MOF community. In the meantime,
we encourage users to report as much information as
possible at every step for better reproducibility. Below, we
provide some advice on how to better use two CSD tools –

ConQuest and the CSD Python API. We also give some
additional information on how to use the previously
published Python script for the removal of solvents.

5. Using ConQuest to access the MOF
subset

One of the most used search tools within ConQuest is Draw.
With this function, users can draw entire molecules or
fragments that should be contained in the targeted structure.
The criteria developed for the CSD MOF subset heavily used
Draw. To access the CSD MOF subset, simply open ConQuest,
then on the top menu bar, navigate to View Databases > Lists
in CSD version X [this will depend on your version of the
software] > MOF subset. There is an additional Non-disordered
MOF subset in this list, which can be used as a starting point
for HTS. However, the term ‘non-disordered’ here can be
misleading and deserves further explanation. The
crystallographic disorder is flagged differently in the CSD
depending on the exact nature of the disorder. A structure is
normally classified as disordered if there is any non-hydrogen
disorder present in the whole structure, that is the framework
and any other unmodelled molecule present – i.e. solvent and
guest molecules commonly seen in MOF-like compounds
where the disordered solvent is treated using the Platon/
Squeeze52 or Olex2/Mask53 tools. In other words, a non-
disordered structure in the CSD might still have missing or
disordered hydrogen atoms. However, the Non-disordered
MOF subset is intended to contain structures with no disorder
within the framework, including no hydrogen disorder or
missing hydrogens, but there might still be disorder in the
unmodelled molecules. The algorithm developed for
identifying these ‘non-disordered’ MOFs works as follows: i)
look for disordered atoms (i.e. cases of multi-site disorder); ii)
search for the nearest neighbouring non-disordered atom; iii)
if this non-disordered atom is part of the framework, the

structure is considered as disordered, if not, (i.e. near a
solvent molecule), it is considered as non-disordered. Fig. 2
summarises the organisation of the MOF subsets in the CSD.
We invite users to explore the differences in disorders by
comparing the Non-disordered MOF subset and a search with
the ‘non-disordered’ filter in the main MOF subset. In the
latter case, the ‘non-disordered’ filter applied to the CSD
MOF subset excludes entries with the disorder in the
unmodelled molecules but keeps frameworks with hydrogen
disorder. Fig. S1† gives a summary of the differences and
overlaps between these two subsets. Errors might still exist in
the database and users are encouraged to report them to the
CCDC. A non-exhaustive list of erroneous entries in the Non-
disordered MOF subset is provided in Table S1.† Once the
desired subset loaded, users can export the list of structures
by going to File > Export Entries as. This will trigger a window
to pop up, and users can choose between different formats
and the folder to export to. Among the most common formats
are the GCD file, a text file containing the list of recodes
(choose Refcode: CSD entry identifier list for this format), the
CIF and the PDB files. The GCD file can then be opened in
Mercury for easier visualisation, polymer expansions and
further analyses. It can also be used with the CSD Python API,
albeit without the visualisation capability. We explained here
how to access the entire CSD MOF subset. For users interested
in retrieving structures from the latest updates only, more
details are given in the ESI.†

6. Tips on ConQuest queries

Although a MOF subset is provided, we encourage users to
perform their own searches within either the CSD or the
MOF subsets and, most importantly, to report the exact
queries used when publishing. Indeed, we noticed that
queries are rarely reported or, at best, only translated into
words. These can be highly misinterpreted and have very low
reproducibility. We also noticed that, often, only one Draw
query is mentioned, when most of the time, a combination
of different queries is necessary to cover the whole spectrum
of possible results. Since the basics of how to use ConQuest
for queries are covered in the user guide (available in Help >

Help Index) or online,54 we will only give a few comments on
how to improve MOF searches.

Draw is a deceiving function, as it appears simple and easy
to use when experience shows that proper usage really is an
art that requires many trials and errors. When a Draw query
is made, ConQuest will look through the 2D diagrams of the
CSD structures and find an exact match to these 2D diagrams
(also called Chemical Diagram in Mercury). There are
different ways of representing the same structures with a 2D
diagram, and this is especially the case for extended
structures since they are only partially represented with the
help of ‘polymeric’ bonds.55 As defined previously,
‘polymeric’ bonds are the essence of extended structures.
Thinking about where and how the polymeric bond can be
defined in a repeating unit is tricky. Fig. 1 shows two
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structures containing carboxylate ligands connected to zinc
atoms – one of the simplest configurations. As highlighted by
the blue circles, there are at least two ways of representing
such a linkage. A single query describing the circled linkage
in Fig. 3a seems intuitive but is too specific and will miss
structures such as the one in Fig. 3b. Therefore, we highly
encourage researchers to examine the resulting diagrams
after each search. These are displayed in the View Results
panel by default, where the matching substructure is
highlighted in red. This will guide users towards a better-
tuned query, or to combining different queries instead. Users
can either create different queries and combine the resulting
hitlists in Manage Hitlists or combine queries directly in the
Combine Queries panel.

When a set of queries is satisfactory, it can be saved and
exported to be reused by other users. We recommend
attaching these files in the ESI† of papers where these
searches are relevant. Each Draw query can be saved as a
CON file by going to File > Export QUEST query in the Draw
window and retrieved by going to File > Read QUEST query. If
a similar Draw query needs to be used several times with
little differences, it can be saved as a template in File > Save
Template. To save a list of queries, users can go to File > Save
Queries and choose between saving all queries, a single query
or the selected queries.

7. Removing solvents with the CSD
Python API

Once the desired MOF subset is obtained from ConQuest
and saved as a GCD file, users can explore the data with the
CSD Python API for more efficient data mining and
structures modification. The CCDC has a thorough guide on
how to use the API at https://downloads.ccdc.cam.ac.uk/
documentation/API/. We particularly recommend the ‘Quick
Primer’ section for anyone new to the API. This will explain
how to load the MOF subset from the obtained GCD list and
how to retrieve simple information. For the removal of bound
and unbound solvents, we previously published a Python
script that takes a GCD list of structures, a solvent list when
necessary and outputs the desired CIF files.7 The algorithm
looks for metal atoms present in the framework, removes all
bonds around them, and compares the removed fragments to
a list of solvent. When no list is provided by the user, the
algorithm uses the default CCDC most common solvent list.
A step-by-step guide for using the Python script is provided
in the ESI.† It is important to note here that the provided
script will remove both bound and unbound solvents.
However, as explained previously, we recommend removing
bound solvents on specific cases only (such as structures
containing Cu–Cu paddlewheels or similar to CPO-27/MOF-
74). To remove unbound solvent only with this script, use an
empty solvent file. Another simple way of obtaining the same
result with the API would be to look for the heaviest weight
component (heaviest_component) of an entry and return only
this part of the entry as a CIF file. The heaviest_component

corresponds to the component in the CSD entry with the
highest molecular weight, a component being a group of
atoms linked with bonds and thus forming a distinct unit.
The heaviest_component is – in general – the framework.
However, exceptions exist and it is wise to check that it is
indeed polymeric (i.e. by using the is_polymeric attribute). If
it is not, one of the substructures must be polymeric by
definition of the subset, and that substructure should be kept
as the framework.

Along with the previous script, we also provided an
alternative where users can remove bound and unbound
solvents on a single entry at a time in Mercury.7 This could
be useful for researchers who are only interested in a couple
of structures. Details on how to operate this script are given
in the ESI.†

8. Adding missing hydrogens

As explained earlier, the non-disordered MOF subset should
not include frameworks with missing hydrogens. However,
‘missing hydrogens’ is another misleading expression that
requires clarification. In a CSD entry, only the atoms
modelled from the original data have coordinates and can be
visualised in Mercury. Hydrogen atoms are sometimes not
found in the original data, therefore not modelled, but are
still accounted for in the CSD so the overall structure makes
chemical sense. These hydrogen atoms are referred to as
‘siteless hydrogens’ in the CSD. They do not appear in the
original structure's CIF file but are taken into account in the
2D diagrams and in search queries. Fig. 4 shows the example
of RUBTAK01, one of many entry versions of UiO-66 in the
CSD. RUBTAK01 is part of the non-disordered MOF subset
and has siteless hydrogens. To obtain the coordinates of
these siteless hydrogens, we recommend users to apply the
add_hydrogens function available in the API. To compute the
position of a missing hydrogen, the add_hydrogen function
refers to the ‘ideal’ geometry calculated based on the
standard chemistry of the structure. The bond lengths, angles
and torsions of this ideal geometry are obtained from
averaging neutron diffraction values. The added hydrogen
atoms will then appear in the CIF file. Equivalent solutions
exist in Mercury. To edit the structure manually, go to Edit >
Edit Structure, click on Hydrogen Atoms. Insert the number of
desired hydrogen atoms on the right, then click on the atoms
to which these hydrogen atoms should be added. To edit the
structure automatically, go to Edit > Auto Edit Structure.
Select Add missing H atoms and click Apply.

9. Outlook

We have reviewed the most common usage of the CSD for
MOFs applications and provided some tips on how to use the
existing CSD tools. Users should now be able to access the CSD
MOF subset, perform and share better queries, remove bound
and/or unbound solvent using the CSD Python API and add
missing hydrogens. These manipulations should be enough for
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simulations where electrostatic interactions between the
framework and the adsorbed molecules are neglected. Multiple
external methods exist for the assignment of partial charges
and we refer readers to the literature in order to choose the
most appropriate one for their application.45,56

As described in this paper, designing the best search query
is not straightforward and there is currently no easy checks to
determine how many structures can be missed; that is, how
accurate a certain query is. The CCDC has already started
assigning to some MOFs their common names (e.g. HKUST-1,
MOF-5, etc.). This information can be searched for as a string.
We believe this effort will greatly facilitate the search for
specific types of well-known MOFs. We also propose to flag any
future deposition as ‘MOF’ vs. ‘non-MOF’ and to double-check
with the automatically updated CSD MOF subset, to ensure the
accuracy of the criteria defined.

It is worth reminding that the CSD MOF subset is an
experimental database, and as such, the quality of the final
data available depends highly on the deposited experimental
data itself, even after being edited by the CCDC. Each CIF file
undergoes a thorough validation process upon deposition: first,
it needs to pass a series of 539 detailed automated checks, the
list of which is available online.57 Second, a chemical structure
is automatically assigned and its reliability is determined based
on the other validated CSD structures.58 Third, a scientific
editor manually checks the structure before it is released with
the publication of the research.59 The complexity of handling
such a large amount of experimental data means that errors
are inevitable. We thus encourage MOF researchers –

experimentalists and computationalists alike – to familiarise
themselves with the general guidelines on good quality CIFs60

and to report any error to the CCDC.
Amongst other recent discussed issues in the HTS for MOFs

community is that of identical and similar structures found in
the CSD. Indeed, the same MOF is often represented several
times, corresponding to syntheses performed in different

research groups or measurements obtained under different
conditions. HKUST-1 alone is present at least 50 times.41

Whether or not users should discard similar structures depends
on the exact research. The presence of numerous identical
structures can indeed skew a data analysis, but the study of a
variety of similar structures may also reveal interesting
structural behaviours. A possible solution to identifying these
MOFs is to flag them in the CSD, provided a concept of
similarity can be agreed on. Currently, similar structures in the
CSD are assembled under the same refcode family. Entries from
the same family share the same six-letter code but have
different ending digits. RUBTAK and RUBTAK01 are for
instance two similar entries corresponding to UiO-66. CSD
editors use different techniques – including molecules overlay
and powder patterns analyses – and the chemistry described by
the authors to assess the similarity of two molecules. However,
this classification is not straightforward for MOFs, as two
identical frameworks with different or unknown guest
molecules will not be considered as part of the same family.
Barthel et al. proposed to exploit the structures' bond networks
to determine whether two structures should be considered as
duplicates.61 In their case, after analysing 502 CoRE MOFs with
assigned partial charges, 15.5% were found redundant. Bucior
et al. recently developed systematic identifiers that assign to
each unique MOF a MOFid and a MOFkey using automated
cheminformatics algorithms.62 These methods could not only
identify duplicates but also initiate a more standardised way of
naming MOFs. The latest update of CoRE MOF includes a
similarity check performed with a Python script that compares
the CIF files directly.42 The StructureMatcher algorithm from
Pymatgen, an open-source Python library for materials analysis,
uses a similar method.42,63

As the field of gas adsorption is growing wider, and more
researchers carry out similar simulations using the CSD data,
it can be power- and time-saving to gather the obtained
results and link them to the CSD. We are working currently

Fig. 4 Example of a structure from the non-disordered MOF subset with siteless hydrogen atoms: UiO-66 (CSD refcode: RUBTAK01). a. 3D
visualization of a repeating unit in Mercury. b. 2D (hydrogen-depleted) diagram available in Mercury.
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with the CCDC to include geometrical and calculated gas
uptakes to the MOF structures' information. Several research
groups have started to exploit the power of machine learning
to rapidly predict gas uptakes by training their algorithms on
data calculated from hypothetical and experimental
databases.64–68 Bucior et al. for instance used the adsorbate–
adsorbent energy as a descriptor to screen the CSD MOF
subset.69 Further GCMC simulations were then run on the
top-performing structures, before identifying the most
promising MOF for hydrogen storage. This structure was then
synthesised and its hydrogen storage capacity experimentally
confirmed. Combining machine learning and a reduced
number of simulations, in this case, used less than 10% of
the computational resources of a brute-force screening
method. Using a genetic algorithm on the CoRE MOF
database, Chung et al. successfully identified a top-
performing structure for carbon capture.70 The MOF was
then synthesised and its working capacity was found to be
higher than any other structures reported then. This genetic
algorithm was estimated to reduce the total computational
time by two orders of magnitude. Machine learning is a
promising and powerful tool, whose accuracy also depends
on the quality of the data it is trained on. We, therefore, hope
this review is the first step for MOF scientists towards a
clearer understanding of what the MOF data consist of in the
CSD, and how they can be modified.

10. Glossary
CSD MOF subset

A subset of MOFs from the CSD accessible with a CCDC
license. It contains the original data deposited and edited by
the CCDC, without any further data processing.

CSD Python API

An API is a set of routines, protocols and tools for building
software applications. It specifies how different components
of an application should interact. The API used with the CSD
is based on Python.

Non-disordered CSD MOF subset

A subset of the CSD MOF subset, it is intended to contain
frameworks without any missing hydrogens. The unmodelled
molecules, however, can still contain hydrogen-related
disorder.

Polymeric bond

A CCDC-specific type of bond that corresponds to a bond
between repeating units. It is used to define extended
structures.
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