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al screening of novel
fluoroquinolone analogs as effective mutant DNA
GyrA inhibitors against urinary tract infection-
causing fluoroquinolone resistant Escherichia coli†

Sakthivel Balasubramaniyan, Navabshan Irfan, Appavoo Umamaheswari
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Fluoroquinolones (FQs) belong to the class of quinolone drugs that are used to treat Urinary tract infections

(UTIs) through inhibition of E. coli DNA gyrase. Resistance to FQs poses a serious problem in the treatment

against resistant strains of E. coli which are associated with Ser83 to Leu and Asp87 to Asn mutations at the

quinolone resistance determining region (QRDR) of the GyrA subunit of DNA gyrase. Mutant DNA GyrA

(mtDNA GyrA) is deemed to be a significant target for the development of novel FQ drugs. Due to

resistance to FQ drugs, discovery or development of novel FQs is crucial to inhibit the mtDNA GyrA.

Hence, the present study attempts to design and develop novel FQs that are efficient against resistant E.

coli strains. A three-dimensional structure of the mtDNA GyrA protein was developed by homology

modeling, following which 204 novel FQ analogs were designed using target based SAR. The designed

ligands were then screened using molecular docking studies, through which the pattern of interaction

between the ligands and the target protein was studied. As expected, the results of the docking study

revealed that the molecules FQ-147, FQ-151 and FQ-37 formed hydrogen bonding and Van der Waals

interactions with Leu83 and Asn87 (mutated residues), respectively. Further, the wild-type (WT), mtDNA

GyrA and docking complex were studied by molecular dynamics (MD) simulations. Subsequently, all the

screened compounds were subjected to a structure and ligand based pharmacophore study followed by

ADMET and toxicity (TOPKAT) prediction. Finally, eighteen hit FQ analogs which showed good results for

the following properties, viz., best binding score, estimated activity (MIC value) and calculated drug-like

properties, and least toxicity, were shortlisted and identified as potential leads to treat UTI caused by FQ

resistant E. coli. Apart from development of novel drug candidates for inhibition of mtDNA GyrA, the

present study also contributes towards a superior comprehension of the interaction pattern of ligands in

the target protein. To a more extensive degree, the present work will be useful for the rational design of

novel and potent drugs for UTIs.
Introduction

Urinary tract infections (UTIs) exemplify some of the most
common bacterial contagions worldwide affecting 150 million
people annually. Recurrence of UTI, occurring in �25–30% of
women, is another major problem and has made treating UTIs
particularly challenging; also, treatment options are limited
owing to the emergence of multidrug-resistant strains of
infection-causing bacteria, especially Escherichia coli (E. coli).1

Fluoroquinolones (FQ) are potent and powerful broad-spectrum
antibiotics commonly used to treat UTIs caused by E. coli in
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hospitalized patients.2 E. coli DNA gyrase is one of the primary
targets of FQs. They act by inhibiting DNA gyrase which
subsequently controls DNA supercoiling, where FQ forms
higher levels of FQ–gyrase-DNA complex in E. coli, thereby
inhibiting its replication and transcription. Thus, elevated
concentrations of these FQs prove to be lethal to the infection
causing E. coli.3 Despite the fact, extensive and improper use of
FQs by UTI patients has led to an increasing FQ resistance (FQR)
in E. coli due to mutations in the GyrA subunit of DNA gyrase.2,4

Further, the increasing rate of FQR against UTIs in recent years
is a major concern among the healthcare community, which
projects a wide variation in the range of 6–75% from country to
country.5 In 2015, Center for Disease Dynamics, Economics &
Policy (CDDEP) reported FQR E. coli isolates from UTI patients
in India (78%), United States (29%), South Africa (28%), United
Kingdom (16%) and Australia (13%), which is indicative of the
RSC Adv., 2018, 8, 23629–23647 | 23629
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Fig. 1 Virtual screening protocol for identification of novel mutant
DNA GyrA inhibitor.
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fact that UTI causing FQR E. coli is a serious problem world-
wide, with India posing the risk of highest prevalence.6

Several previous studies on clinical isolates of E. coli have
shown that majority of the resistant strains were mutated
within the amino acid residues spanning from 67 and 106
(inclusive) of DNA GyrA which is termed as the quinolone
resistant-determining region (QRDR).7 The spontaneous muta-
tions at Ser83Leu and Asp87Asn in the QRDR region of GyrA are
reported to be responsible for FQR in E. coli that were isolated
from UTI patients.8,9 Mutation of these important residues
results in �ten-fold decrease in binding affinity of FQs to the
gyrase-DNA complex in E. coli and confers high level resistance
to FQs10,11 due to which, management of serious UTIs with
currently available FQs has become increasingly challenging.
Emergence of FQR E. coli strains creates an increasing demand
for development of novel and potent FQ derivatives for effective
UTI therapeutics. However, there is no experimental evidence
for the structure of mutant E. coli DNA GyrA (mtDNA GyrA)
protein which makes development of target specic inhibitors
even more complicated. With motivation from the above
information, 3-D model of the mtDNA GyrA was developed
using homology modeling, followed by which, novel FQ analogs
were designed based on the structure–activity relationship
(SAR) to study its interaction with the modeled mtDNA GyrA
protein to develop drug candidates that can treat UTIs caused by
resistant E. coli strains.

As a part of the present drug development study, in silico
docking has been exploited with a goal to elucidate congura-
tional information of mtDNA GyrA, determine its relative
binding strength and the nature of interactions with the newly
designed FQ analogs. Finally, the superlative FQ analogs among
the designed compounds were identied through an integrated
procedure of virtual screening and hit optimization with
combined pharmacophore – ADMET-toxicity analysis.
Methodology

All the in silico studies (Homology modelling, Molecular
dynamic simulation, Molecular docking, Pharmacophore,
ADMET and TOPKAT) were carried out using BIOVIA Discovery
Studio (DS) version 2017.12 The schematic view of this study is
depicted in Fig. 1. All the gures in this manuscript are novel
and developed by DS and OrginPro2015 soware.
Homology modeling

The 3D-crystal structure of the target protein mutant GyrA of
FQR E. coli was not available in the Protein Data Bank (PDB).
Hence, it was determined using homology modeling technique.
Mutant GyrA amino acid sequence (875aa) for FQR E. coli strain
SMS-3-5 was retrieved from Uniport database with id B1LKX7.
This strain exhibits mutations in both Ser83(TCG) to Leu(TTG),
and Asp87(GAC) to Asn(AAC) in their GyrA sequence resulted in
decreased susceptibility to FQs and signicantly correlated with
FQRs in UTI patents.8,13 Basic Local Alignment Search Tool
(BLAST) protocol in DS against PDB was carried out to nd an
appropriate template, through which, wild-type (WT) E. coli
23630 | RSC Adv., 2018, 8, 23629–23647
DNA GyrA (PDB ID: 1AB4) was selected. The mutant target
sequence was aligned with the template sequence (1AB4) using
Align Multiple Sequences protocol. The Build Homology
Modeling protocol was used to build the structure with the help
of target sequence. Further, the cut overage limit was xed as
4.5 Å to remove the terminal-unaligned residues in the model
sequence. Additionally, disulde bridges, cis-prolines and
additional restraints were not included in order to simplify the
homology model of mtDNA GyrA. Using high resolution discrete
optimized protein energy (DOPE) method, the loop was rened
at high optimized level. Finally, one best model was chosen
according to the lowest DOPE score, where, lower DOPE score
represents structures with superior stable 3D conformation.14

Model evaluation

The generated mtDNA GyrA model was superimposed with
template structure by Align and Superimpose Protein protocol
to calculate the root mean square deviation (RMSD) of coordi-
nates between homology model and template structure. The
model was then optimized by energy minimization technique
using CHARMm force eld with a gradient 0.1 kcal mol�1 Å�1 in
order to remove any steric clash within the amino acid side
chains. The accuracy of predicted model and its stereochemical
properties were evaluated using Ramachandran plot and overall
goodness factor (G-factor) using PROCHECK.15 In addition, the
model was analysed by ProQ,16 ERRAT,17 Verify 3D18 and ProSA19

online servers.

Molecular dynamic simulation studies on modeled protein

Using the rened homology model (mtDNA GyrA) and its FQ
complex as the starting structures in femto second (fs) molec-
ular dynamics studies to generate a realistic model of a struc-
ture's motion. The above systems were solvated using explicit
This journal is © The Royal Society of Chemistry 2018
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TIP3P water models to get accurate description. For explicit
periodic boundary water simulation, an orthorhombic cell
shape was set up and the molecules were positioned at 7 Å
minimum distance from the cell boundary. Sodium and chlo-
ride ions were added to the systems to keep the system neutral.
The Standard Dynamics Cascade protocol applies a set of
simulation procedures to the input structure. Typically, it is
used to minimize and equilibrate the molecular system and
prepare for input to production dynamics using CHARMm
algorithm. An initial minimization stage, typically using 1000
steps of the robust steepest descent algorithm and a second
minimization stage, typically using the 2000 steps of conjugate
gradient method to ensure that a low energy starting point is
supplied to subsequent dynamics stages. Each system was
energetically minimized and then slowly heated up from 50 to
300 K over a period of 2.0 fs with a harmonic constraint of
0.1 kcal mol�1 Å placed on all backbone atoms. The equilibra-
tion stage was performed to equilibrate the systems at a target
temperature. A molecular dynamic production run in a suitable
NVT thermodynamic ensemble at a given temperature based on
the equilibrated system from the previous step. The results of
the production stage are stored at 2 ps time intervals. Finally,
trajectories generated for mtDNA GyrA and its FQ complex from
the production run was analysed and compared.

SAR based design of new uoroquinolone analogs

Several drugs have been pulled back from late-stage testing due
to off-target impacts.20 Consequently, to accomplish selectivity
and maintain a strategic distance from side effects, knowledge
of related binding site is also important. About 204 new FQ
analogs were designed based on the SAR of the standard FQ
drug and binding site (QRDR region) of the modeled mtDNA
GyrA protein. All the designed ligands including standard
ciprooxacin were drawn by using ChemDraw Professional 15.0
soware. The structural data of the all the ligands were saved in
.mol format for further studies. Novelty of the designed
compounds was also evaluated using SciFinder (http://
www.cas.org) and ChemSpider (http://www.chemspider.com).

Molecular docking

Molecular docking was performed to identify the biologically
active hits among the designed ligands where the conformation
with the lowest binding energy is considered to form stable
complex inside the active site of mtDNA GyrA. This study was
performed using CDOCKER, which is a grid-based molecular
docking tool that employs CHARMm force eld. The CDOCKER
score is expressed as negative value (i.e., -CDOCKER_ENERGY)
where higher value indicates a more favorable binding. The
CDOCKER energy was calculated from the H-bonds, van der
Waals and electrostatic interactions between the target protein
and the ligand.

Binding site of the modeled protein was xed based on the
crystal data of the template protein. The binding site sphere
center was set at 9 Å radius which would facilitate interaction of
the ligands with mutated amino acids. Further, CHARMm force
eld was applied followed by energy minimization to identify
This journal is © The Royal Society of Chemistry 2018
local minima (lowest energy conformation) of the modeled
mtDNA GyrA with an energy gradient of 0.1 kcal mol�1 Å�1,
using smart minimizer algorithm.

The energy minimized receptor protein and the set of 204
designed structures with the binding site sphere radius set at X
¼ 29.50, Y ¼ �31.38 and Z ¼ �38.79 were submitted to the
CDOCKER parameter. The sphere encompassed 48 amino acids
starting from 61st to 134th residue in the mtDNA GyrA
including the mutated residues. Default setting was retained for
the remaining scoring parameters. Ligands with lowest docking
score were shortlisted for further pharmacophore analysis.

To get concord compounds, LibDock docking method was
performed. This algorithm aligned the ligand conformation to
hotspots (polar and apolar) of receptor interaction sites and the
and retained best scoring poses of ligands.21 Ligand confor-
mations can be pre-calculated and generated on the y using
catalyst algorithm. The Max Hits parameter was set as 1, which
means, the highest LibDock score of each compound was saved.
The remaining parameters were kept as default. Ligands with
lowest-CDOCKER energy and highest LibDock score were
shortlisted for further pharmacophore analysis.

Pharmacophore analysis

Pharmacophore models provide a rational explanation of how
structurally diverse ligands could specically bind to the active
site of the target protein. In the present work, structure-based
and ligand-based pharmacophore modeling approaches were
applied to identify the functional groups and respective features
which are responsible for the selective activity of the designed
ligands against the mtDNA GyrA of the resistant E. coli strains.

Structure-based pharmacophore modeling

Structure-based pharmacophore (SBP) study analyzes the active
site residues of mtDNA GyrA, extracts pharmacophore query
from the Ludi interactionmap which is created inside the active
site sphere and assigns only three main features namely
hydrogen bond acceptor (HBA), hydrogen bond donor (HBD)
and hydrophobic (HY) features. In Interaction Generation
protocol, mtDNA GyrA was used as input receptor with binding
site sphere (9 Å radius) set at X ¼ 16.13, Y ¼ �35.25 and Z ¼
�29.55. Subsequently, the density of polar sites and lipophilic
sites values was xed at 25 to specify the density of the vectors in
the interaction site for hydrogen bonds and points in the
interaction site for lipophilic atoms respectively. The Edit and
Cluster Pharmacophore tool was used to cluster the common
pharmacophore properties down to <30 features.

Screening of the designed compounds using feature map

The generated SBP model was used to screen the best hits
among the selected compounds from docking studies. The
screening was accomplished using Screen Library protocol
which enumerates several possible pharmacophores from
pharmacophore feature model using active training set. This
protocol was performed with the exible t between designed
compound conformations and pharmacophore model with
default setup was maintained for other parameters. Geometric
RSC Adv., 2018, 8, 23629–23647 | 23631
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t values were calculated for every hit based on how well the
chemical structures of a compound map on to the location
constrains of pharmacophore feature and their distance devia-
tion from the feature centers. The t value of molecules is
computed by the equation,

Fit ¼ P
mapped hypotheses features �

W [1 � P
(distance/tolerance)2]

where, W is the weight associated with the feature sphere
(default 1.0 Å). The weighting term included the distance
between the feature centroid in the sphere and its corre-
sponding chemical groups and tolerance is the radius of the
feature sphere (default 1.6 Å).22 Hit compounds that satised all
the screening tests were ltered and used for further ligand-
based pharmacophore (LBP) modeling.
Ligand-based pharmacophore modeling

Data set preparation. For LBP modeling, a set of 10 standard
FQ drugs and 20 other FQ derivatives which have been identi-
ed and reported to be active against E. coliwere collected based
on literature. The inhibitory activity of these compounds was
expressed as minimum inhibitory concentration (MIC) in mg
ml�1. For the data set, 10 standard FQ drugs were chosen as
training set compounds and the remaining 20 compounds were
considered as test set. The training set was chosen based on the
structural diversity and extensive coverage of the activity values
which spans a wide range transversely from 0.13 mg ml�1 to
0.0125 mg ml�1.

All the training set and test set ligands were prepared using
Prepare Ligands protocol in DS. The preparation steps involved
conversion of 2D structures to 3D and addition of hydrogen
atoms through which a reasonable 3D conformation can be
generated followed by energy minimization. All the compounds
were minimized using the smart minimizer algorithm with
maximum steps set at 200 and RMS gradient value of
0.1 kcal mol�1. A principle attribute was added in the property
of the molecule and the value was set as 2, 1 and 0 for most,
moderate and least active molecules, respectively. Similarly,
maximum omit feature (MaxomitFeat) value was assigned 0, 1
and 2 for most, moderate and least active molecules,
respectively.
Pharmacophore model generation

An initial analysis of the training set compounds using the
Common Feature Pharmacophore Generation protocol was
performed, which revealed that HBA, HY and ring aromatic (RA)
features of active training set compounds were crucial for
antagonistic properties of DNA GyrA. On this basis, HBA, HY
and RA were selected to generate standard pharmacophore
model (Hypogen) by using 3D QSAR Pharmacophore Genera-
tion protocol. The maximum number of pharmacophore model
was set to 5 followed by which minimum and the maximum
numbers of selected features were set at 0 and 5, respectively.
Simultaneously, best conformation method was selected from
three methods viz., fast, best and caesar to generate multiple
23632 | RSC Adv., 2018, 8, 23629–23647
conformations for each compound present in training set to
identify the best map. All other parameters used in this protocol
were kept at their default settings. In this study, the top 5
hypothetical structures (Hypogen model) were generated with
corresponding statistical values such as conguration, cost
value, weight, root mean square deviation (RMSD) and t
values. This protocol also predicts the theoretical MIC value for
each training set compounds. Out of the 5 models, 1 best
Hypogen model (Hypo 1) was selected using cost analysis.
Furthermore, the reliability of a pharmacophore model Hypo 1
was evaluated by superimposing the training set compounds on
the Hypo 1 and assessed by correlating the geometric t. Like-
wise, the predicted activity of training set compounds correlated
with reported activity of the training set compounds.

Pharmacophore model evaluation

The main purpose of validating a quantitative pharmacophore
model is to determine its capacity to identify active compounds,
as well as, its predictive ability for corresponding molecules. It
was performed with test set using Fischer randomization
methods.

Test-set method

The prediction ability of Hypo 1 was validated by feature
mapping and estimating the activity of 20 test set compounds.
This technique is utilized to assess the reliability of the gener-
ated pharmacophore model to predict activity of the other
compounds apart from the training set compounds and
precisely classify them according to their activity scale. The test
set compounds and Hypo 1 were subjected to Ligand Pharma-
cophore Mapping protocol with Flexible Fitting Method to
estimate the MIC and the t value of each test set compounds.

Activity of any compound can be estimated from a Hypogen
through the equation,

log(estimated activity) ¼ I + Fit

where, I ¼ the intercept of the regression line obtained by
plotting the log of the biological activity of the training or test
compounds against the Fit values of the training or test set
compounds.22

Fischer randomization method

Signicance of the best pharmacophore hypotheses was
assessed using the Fischer validation (CatScramble test
program) in DS. For the Fisher's randomization test, the desired
condence level was set as 95%, aer which, 19 random
spreadsheets were constructed.23 This method generates the
hypotheses by randomly shuffling the activity value of the
training set compounds aer which it creates new spreadsheets
to validate the strong correlation between chemical structure
and biological activity of training set compounds.

Virtual screening of designed compounds

The validated Hypo 1 was used to predict the activity (MIC value)
of hit compounds from the result of SBP modeling for which
This journal is © The Royal Society of Chemistry 2018
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Ligand Pharmacophore Mapping protocol was used. Of the
designed compounds, the compounds that are well mapped
with the lowest predicted MIC values were shortlisted and
subjected to further ADMET and toxicity prediction.
Fig. 3 Cavity site of the (a) wild-type E. coli DNA GyrA and (b) resistant
E. coli mtDNA GyrA. This site denoted as a quinolone resistance
ADMET and toxicity predictions

The selected hit compounds were submitted to ADMET and
TOPKAT protocol to assess pharmacokinetics and toxicity
properties respectively. The various pharmacokinetic parame-
ters such as, hepatotoxicity levels, aqueous solubility, cyto-
chrome CYP2D6 inhibition, blood–brain-barrier penetration
(BBB), plasma protein binding (PPB) and human intestinal
absorption (HIA) of each designed compound were evaluated by
using ADMET algorithm. These were considered as descriptors
of drug-likeness. Further, potential toxicity and degradation
products of designed compounds were performed by TOPKAT
protocol. TOPKAT employs rigorously developed and validated
Quantitative Structure Toxicity Relationship (QSTR) models to
forecast toxicological end points regarding probability values.24
determining region (QRDR). Hydrophobic nature of the (c) wild-type
type and (d) mtDNA GyrA (schematic view) active site.
Results and discussion
Homology model of mtDNA GyrA

In recent years, homology modeling has become the main
alternative to get a 3D representation of the target in the
absence of crystal structures. As there was no crystal structure
available for mtDNA GyrA of FQR E. coli, it was determined
using a homology modeling in DS. The structure was built using
WT E. coli DNA GyrA (PDB ID: 1AB4) as template with 98.7%
sequence identity (Fig. 2). High sequence identity of the
modeled structure with the template conrms precise connec-
tivity of the secondary elements. The mutant model and the WT
protein are similar except for minor variation in the loop
regions that fall near the site of mutations.

It was observed that the cavity of mtDNA GyrA was found to
be reduced with a size of 2597 Å compared to that of the WT
DNA GyrA with cavity size of 2857 Å (Fig. 3), which is attributed
to the increased hydrophobic surface area in mtDNA GyrA. The
above information paves way for design of potent novel FQ
analogs.
Fig. 2 Pairwise sequence alignment between the amino acid
sequence of mtDNAGyrA and that of template 1AB4. Mutated residues
indicated in red square box.

This journal is © The Royal Society of Chemistry 2018
Model evaluation

Modeled structure with the lowest DOPE score
(�101452.2 kcal mol�1) was superimposed with template
structure (1AB4) and RMSD value (1.32 Å) was calculated
(Fig. 4a), the value of which is indicative of a greater backbone
similarity between the modeled protein structure and the
template. Further, the modeled structure was subjected to
validation, where, PROCHECK-NMR-generated the overall G-
factor value of 0.4 and Ramachandran plot (Fig. 4b) showed
90.3% of residues located in the most favored region, 8.0% in
the additionally allowed region, 0.3% in the generously allowed
region and 1.3% in disallowed regions. The mutated residues
fell under the allowed region of the Ramachandran plot. These
values strongly indicate that the model has good overall
stereochemical quality and stability. The ProQ Levitt–Gerstein
Fig. 4 (a) Superimposition of mtDNA GyrA model (green) with
template 1AB4 protein (red). (b) Ramachandran plot for the predicted
model mtDNA GyrA. Color code: most favored (red), additionally
allowed (yellow), generously allowed (pale yellow) and disallowed
regions (white color).

RSC Adv., 2018, 8, 23629–23647 | 23633
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(LG) score (5.684) and verify 3D–1D average score ($0.2)
(Fig. S1†) showed that themodel is an extremely high-quality 3D
structure16 and good environmental prole, respectively.
Moreover, according to ERRAT analysis, the overall quality
factor of the model was 90.096 (Fig. S2†) and that of ProSA
(protein structure analysis), the value of Z-score plot was �7.98
(Fig. S3†) which proved that generated model is of reliable
quality. All the evidence suggested that the conformation of the
backbone, non-bonded interaction and energy prole of the
model was well within the range of the high-quality model.
SAR based design of new uoroquinolone analogs

Generally, the bulky heterocyclic ring at the C-7th position in FQ
structure has broad spectrum antibacterial activities and is
poorly exported from bacterial cell.25 Also, its direct interaction
with DNA gyrase affords more rigid drug–protein interactions
and impedes the efflux mediated uoroquinolone resistance.26

Recent studies revealed that substitutions at C-7th position of
FQs overcome the protective effect of gyrase mutations in
resistant E. coli.3 Based on the above information, 204 novel FQ
analogs were designed with two different substitutions of aze-
tidinone and thiazolidinone hetero rings at the C-7th position
of FQ skeleton (Table S1†), general structure of the novel FQ
analogs depicted in Fig. 5. Additionally, as per the SAR studies
the carboxylic acid group and keto group substitution of the FQ
core at C-3rd and C-4th position, respectively, is crucial for the
interaction of FQ to the DNA GyrA.27

Any substitution at C-8 and N-1 positions would restrict the
rotational freedom of the C-7 rings, which is critical for rigid
FQ–gyrase-DNA interaction. Similarly, substitutions at N-1 and
C-8 position are also reported to alter core FQ structure, thereby,
affecting the FQ activity and lethality.28 Therefore, no alterations
were made at C-3rd, C-4th, C-8th and N-1 positions in order to
maintain the stereochemical integrity and subsequently prop-
erty of the lead structure. It is to be noted that most of the
mutated residues in the mtDNA GyrA are hydrophobic in
Fig. 5 Design of new fluoroquinolone analogs based on the struc-
ture–activity relationship.

23634 | RSC Adv., 2018, 8, 23629–23647
nature. Therefore, different hydrophobic fragments (R) were
substituted on the azetidinone and thiazolidinone ring at the C-
7th position of designed FQs to improve the hydrophobic
interaction with the mutated amino acids in the active site
region. These data provide functional relevance towards
binding of new designed FQ to mtDNA GyrA, thereby, opening
a new avenue into understanding FQ–gyrase binding affinity
and a novel platform for designing novel FQs that are capaci-
tated to surpass existing FQR.
Molecular docking

Docking study was performed to analyse the binding pattern of
the designed compounds with the mtDNA GyrA protein. Among
the newly designed 204 FQ derivatives, 100 drug-like hit
compounds were selected based on the lowest CDOCKER
energy and their binding affinity in comparison with the stan-
dard ciprooxacin (Fig. 6)

Interestingly, from the selected 100 molecules, around 92 FQ
molecules substituted with azetidinone fragment conned
good binding affinity, which suggests that azetidinone fragment
moiety at C-7th position in FQ formed more bonded and non-
bonded interactions with the active site residues of the target
protein, rather than thiazolidinone fragment. The molecule
FQ-172 (6-uoro-4-oxo-7-{4-oxo-2-[4-(pentyloxy) phenyl]-1,3-
thiazolidin-3-yl}-1,4-dihydroquinoline-3-carboxylic acid) has
four-fold higher affinity (�27.324 kcal mol�1) compared to
standard ciprooxacin (�7.952 kcal mol�1). This higher
interaction is due to the 11th (C-4) and 19th (C-3) oxygen
atoms of FQ basic nucleus forms two H-bond interactions with
Arg32, with a bond length of 1.9 Å and 2.4 Å, respectively.
Additionally, uorine (C-6) atom of the FQ forms halogen
interaction with Arg32. Halogen (uorine) interactions are
carbon-bound halogen interactions that have similar struc-
tural signicance to weak hydrogen bonds.29 Moreover, FQ 172
forms van der Waals interaction with mutant residue Asn87.
Fig. 6 The-CDOCKER energy score (kcal mol�1) of the 204 newly
designed FQ analogs. Color code: red stars indicates selected 100 hit
compounds having lower-CDOCKER energy (�9.55 to
(�27.324 kcal mol�1). Black stars indicated the higher-CDOCKER
energy compounds (�9.47 to +29.7924 kcal mol�1).

This journal is © The Royal Society of Chemistry 2018
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Fig. 9 The LibDock score of the 150 FQ molecules. Color code: red
stars indicates selected 100 hit compounds having highest score
(61.96 to 108.48). Black stars indicated the lower score (20.15 to
52.92).

Fig. 7 Interaction ofmolecule FQ-172, FQ-147 and FQ-151 with active
site residues of mtDNA GyrA model. The blue circle indicated as a FQ
resistant residues (mutant residues).
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The other Pi–sulfur, Pi–Pi and Pi–alkyl interaction are clearly
depicted in Fig. 7.

The CDOCKER energy of ciprooxacin (�7.952 kcal mol�1)
was found to be less compared with selected molecules due to
the absence of strong H-bond interaction in active site residues
of the mtDNA GyrA (Fig. 8b). Especially, molecule FQ-147
(�22.6919 kcal mol�1) forms strong H-bond with Asn87 and
FQ-151 (�22.5215 kcal mol�1) forms van der Waals interaction
with Leu83 and Asn87 (Fig. 7). The Leu83 and Asn87 is the one
of most frequently mutated residue instigating high-level FQ
resistance in E. coli among the UTI.8,9 Similarly, molecule FQ-
177, FQ-137, FQ-131 and FQ-70 forms strong H-bond interac-
tion with Asn87 (Fig. S4†). Additionally, the un-substituted –NH
group and –COOH group of molecule FQ-37 forms two H-bond
with Asn87 (1.9 Å) and Ala1171 (1.9 Å) residues (Fig. 8a)
compared with that of the standard drug ciprooxacin
Fig. 8 (a) Hydrogen bond interaction of unsubstituted –NH group in
molecule FQ-37 with mutant residue Asn87 (b) interactions of
substituted –NH group in ciprofloxacin.

This journal is © The Royal Society of Chemistry 2018
comprising –NH group substituted with propyl ring which
clearly blocks the H-bond formation. This H-bond interaction of
unsubstituted –NH group of the newly designed FQ analogs
creates a novel binding site, thereby, reducing the steric
hindrance in the mtDNA GyrA protein. From the above docking
results, it is conrmed that the newly designed FQ analogues
interact effectively with the mutated residues and, hence, serves
as a novel mtDNA GyrA protein inhibitor.
Docking studies performed using LibDock

The LibDock docking soware was used to conrm the reli-
ability ranking of novel FQ analogous. The results showed that
among the 204 molecules only 150 FQ molecules were docked
and the remaining molecules failed to form proper orientation
in the active site. The LibDock score of each compound are
graphically shown in Fig. 9. The molecule FQ-182 shows
a highest LibDock score of 108.48 compared to other molecules.
Which forms strong hydrogen bonds, van der Waals, Pi–sulfur
and Pi–alkyl interactions with active site residues. Notably, the
mutant residue Asn 87 interacts with unsubstituted –NH group
of FQ-181 molecule by strong hydrogen bond (Fig. 10).
Fig. 10 The docked pose of FQ-182 (highest LibDock score) with
active site residues of mtDNA GyrA model.
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Fig. 13 LibDock scores of the virtually screened 100 FQ analogous in
four conformations.

Fig. 11 (a) Time based total energy changes graph in MD simulation
for three systems. (b) Equilibrium state effect of temperature changes
in different time scale of all the three system in equilibrium state.
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The combined CDOCKER and LibDock results provide
a more reliable ranking of 100 best molecules. The 100 hit
molecules screened from both the docking results had good
interaction with active site residues of mtDNA GyrA through H-
bonds, Pi–alkyl and van der Waals interactions. It primes
a docking score ranging from �23.9069 to �9.55468 (kcal
mol�1) (Fig. 6) and 61.96 to 108.48 (Fig. 9.) as listed out in Table
S2.† The binding affinity assessment of the docked compounds
revealed higher affinity of azitidinone fragment substitution
when compared with thiazolidinone fragment substitution,
from which, it can be inferred that the fragments with hydro-
phobic alkyl group performed better than those with aromatic
ring substitutions. The highest dock score value of all the 100
hit molecules indicates good molecular level interactions into
binding site and these molecules were further subjected to
pharmacophore screening and toxicity prediction.
Molecular dynamic simulation studies

MD simulation was focused on analysing the pattern, strength,
properties of protein behaviour, drug receptor complex stability
and conformation changes by using comprehensive empirical
energy function. The solvation process added 15 161 water, 54
sodium and 40 chloride ion in the explicit periodic boundary
cell to determine the molecular conformation, electronic
properties and binding energies. Initial coordinates have bad
contacts, causing high energies and forces. The protein stability
during MD simulation is monitored through the time evolution
of the root mean square deviation (RMSD). MD simulations
Fig. 12 (a) RMSD of various conformation generate in production
stage. (b) RMSF of amino acid residues between this three system in
production stage run.

23636 | RSC Adv., 2018, 8, 23629–23647
were carried out up to 2200 ps for the mtDNA GyrA and its FQ
complex systems. Fig. 11 shows that the total energy variation
and stabilization temperature for the systems. All the system
found stabilized at the 1100 ps time at 290 K temperature and
the energy of the system at the stabilized state was 625, 570 and
510 (kcal mol�1) for WT, mtDNA GyrA protein and FQ complex
respectively. Fig. 12 displays the distributional probability of
RMSD from 120 to 420 ns trajectories. The mean RMSD values
of the three systems were 0.7 Å (WT), 1.0 Å (mtDNA GyrA) and
1.3 Å (FQ-complex). The RMSD analysis shows that the struc-
tural stabilities in MD simulations are consistent with the
experimental binding affinity data. Notably, the RMSD value of
the mtDNA GyrA system is higher than that of WT. In the WT
system, the polar non-charged residue Ser83 was mutated to
non-polar Leu residue and negative charged amino acid Asp87
was mutated neutral residues of Asn. Thus, this mutation
caused the steric repulsion increased the uctuation of the
protein structure remarkably. The exibility of each residue is
calculated by its root mean square uctuation (RMSF) value.
Fig. 12 showed the RMSF values of residues of three systems
calculated from 120 to 420 ns trajectories. The mutated part of
the system showed relatively low uctuation values. Hence it is
not affected the stability of the protein, but this mutation causes
hydrophobic repulsion of the old FQ drugs.
Fig. 14 (a) Structure-based pharmacophore model generated from
the mtDNA GyrA protein and (b) molecule FQ-151 mapped on the
generated pharmacophore features. The identified pharmacophoric
features are shown in green, cyan and magenta for HA, HY and HD
features, respectively.

This journal is © The Royal Society of Chemistry 2018
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Fig. 16 (a) Hypo 1 (best pharmacophore) generated by Hypogen. (b)
Total training set compounds mapped on Hypo 1. (c) Mapping of most
active and (d) least active compounds.

Fig. 15 The predicted fit values and relative energy (kcal mol�1) of the
screened 50molecules using structure-based pharmacophore model.
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Docking studies performed with different conformations

The MD simulation study report of 500 conformations for
mtDNA GyrA protein was performed. Aer clearly analyzing the
results for each conformation of mtDNA GyrA, it was observed
that there was no signicant conformational changes in the
active site cavity, with the only minor disparity in the other sites.
To analyses stability of the above docking results, additionally,
Table 1 Statistical results of the generated pharmacophore models

Hypogen no
Total cost
(bits)

Cost difference
(total cost-null cost) (bits)a R

Hypo 1 98.15 119.666 1
Hypo 2 106.85 110.966 1
Hypo 3 133.45 84.366 1
Hypo 4 129.27 88.546 1
Hypo 5 122.74 95.076 1

a The cost difference between null cost and total cost; null cost is 21
b Abbreviation: RMS, root mean square deviation; HBA, hydrogen bond
aromatic.

This journal is © The Royal Society of Chemistry 2018
four conformations (conformations no. 49, 194, 372, and 500)
were selected based on the stable RMSD (0.75, 0.84, 0.92, and
0.90 respectively) values for the docking process. The docking
results using LibDock algorithm revealed that all the four
conformations formed a stable complex with the screened 100
FQ analogs (Fig. 13). The detailed LibDock score of each
conformation are listed out in Table S3.† It concludes that the
docking results generated are not by chance.
Pharmacophore modeling

Pharmacophore modeling, in total, is collective information of
the steric and electronic features necessary for optimal supra-
molecular interactions with a target protein structure and
block/triggers its response.30
Structure-based pharmacophore modeling

SBP is a kind of pharmacophore derived from protein' active site
information which pertains to identication of hydrophobic
(HY), H-bond donors (HBD) or H-bond acceptors (HBA) of target
protein. In this study, the generated pharmacophore model of
mtDNA GyrA protein contains a total of 26 features such as ten
HY, nine HBD and seven HBA (Fig. 14a). As a result of mapping,
100 hit molecules from docking results were mapped with the
generated SBP model to identify the geometric t values of the
compounds. Based on their higher t values, 50 compounds
were carefully chosen for further ligand-based pharmacophore
modeling. The t value of the 50 molecules ranged from 3.225
to 2.0161 and that of the relative energy ranged from 19.577 to
0.125 (kcal mol�1) (Fig. 15). All the selected molecules were well
tted with the active site features of mtDNA GyrA pharmaco-
phore. It was observed that the molecule FQ-151 mapped well
with six features of SBP model as depicted in Fig. 14b. The
phenyl ring of the FQ-151 nucleus and long alky chain of the
azitidinone fragment mapped with four HY features. Also, the
–NH position of the phenyl ring and azitidinone (O-atom)
formed good orientation t with HBD and HBA.
Ligand-based pharmacophore modeling

In this process, 5 set of pharmacophore hypotheses (Hypogen)
were generated from the 10 training set compounds by using
3D QSAR pharmacophore generation protocol. Hypogen is the
quantitative hypotheses used to identify the features that are
MSb (Å) Correlation Featuresb Max t

.12 0.921 1HBA lipid,1Hy,1RA 9.12

.59 0.916 1HBA lipid,1Hy,1RA 8.11

.41 0.930 2HBA lipid,1Hy 10.02

.70 0.867 3HBA lipid 3.20

.66 0.883 1HBA lipid, 2Hy, 1RA 5.29

7.816 bits; xed cost is 107.15 bits; conguration cost is 0.921 bits.
acceptor; HBD, hydrogen bond donor, HY, hydrophobic and RA, ring

RSC Adv., 2018, 8, 23629–23647 | 23637
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Table 2 Experimental and estimated MIC values of the training set compounds based on the best pharmacophore hypotheses Hypo 1

Training set compounds MIC value (mg ml�1)

Fit value ErrorbStructure Name Experimentala Estimated

Gemioxacin 0.01 0.0097976 5.96258 �1.02065

Sparoxacin 0.0125 0.0189725 5.67557 1.5178

Ciprooxacin 0.015 0.0289285 5.49237 1.92857

Zabooxacin 0.015 0.0152749 5.76972 1.01833

Levooxacin 0.022 0.011427 4.8766 �1.84213

Moxioxacin 0.025 0.0172101 5.71792 �1.45264

Trovaoxacin 0.025 0.0238815 5.57564 �1.04684

Ooxacin 0.062 0.0719427 4.8766 1.92624

23638 | RSC Adv., 2018, 8, 23629–23647 This journal is © The Royal Society of Chemistry 2018
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Table 2 (Contd. )

Training set compounds MIC value (mg ml�1)

Fit value ErrorbStructure Name Experimentala Estimated

Noroxacin 0.094 0.0637224 5.14941 �1.47515

Enoxacin 0.1 0.074975 5.07878 �1.33378

a Ref. 3,32–37. b Positive value indicates that the estimated MIC value is higher than the experimental MIC value; the negative value indicates that
the estimated MIC value is lower than the experimental MIC value.
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present in the training set compounds. Generated hypotheses
comprised of three chemical features: HBA, HY and RA
(Fig. 16a) from which it could be proposed that these three
features are crucial factors for inhibition of the E. coli DNA
gyrase. Inhibition of a target protein is not only decided by the
chemical features of the training set compounds, it also
required to have an exact shape to t into the active site of the
protein. Thus, we had carefully evaluated the Hypogen by
statistical parameters like cost analysis, correlation coefficient
and RMS deviation. The statistical parameters such as cost
values, correlation and RMSD are summarized in Table 1. The
total cost of each hypotheses was much closer to the xed cost
value, thus, satisfying the potentials of a good hypotheses.
Among the total cost values of ve pharmacophore models,
Hypo 1 scored the closest value (98.15) to the xed cost value
(107.15) than other models. Hypo 1 had the highest cost
difference between null cost (217.81) and total cost (98.15) of
119.66 bits. The large difference between these costs suggests
that Hypo 1 has more than 90% statistical signicance. High
correlation coefficient and low RMSD value of Hypogen indi-
cated higher ability to predict the activity of the training set
compounds.31 The developed Hypo 1 had the correlation
coefficient value of 0.921 Å and RMSD deviation of <1.12 Å
than other four models, which suggests that the Hypo 1 model
is more effective for prediction of the activity of the training set
compounds, predictive activity and average t values listed in
Table 2. The geometric t values for every molecule was
determined by their map on the feature location. In Fig. 16c
and d, the highest active compound (gemioxacin MIC ¼ 0.01
mg ml�1) exhibits a good t with all the features of the Hypo 1,
whereas, in the least active compound (enoxacin MIC ¼ 0.22
mg ml�1) the HBA feature mapped away from the t. On this
basis, it can be concluded that Hypo 1 is a reliable model that
accurately estimates the MIC values of the training set
This journal is © The Royal Society of Chemistry 2018
compounds. Further, the best pharmacophore model Hypo 1
was validated by Fisher's randomization and test set method.

Pharmacophore model evaluation

Fisher's randomization. Fischer's randomization test was
used to validate the statistical signicance of Hypo 1. The
condence level was xed at 95% and a total 19 random
spreadsheets were created to produce the hypotheses (Fig. 17).
The formula S ¼ [1 � 19 + X)/Y] � 100 was used to calculate the
signicance level of hypotheses at 95% (S), where, X is the total
number of hypotheses having a total cost lower than the orig-
inal hypotheses and Y is the total number of Hypogen runs.
Here, X ¼ 0 and Y¼ (1 + 19), hence, 95% ¼ {1 � [(1 + 0)/(19 + 1)]}
� 100. All 19 random spreadsheets have high-cost values
(121.968–322.813) than total cost (98.15) and that of the corre-
lation value (0.301–0.894) is less than the Hypo 1 (0.918) (Table
S4†).

It clearly shows that Hypo 1 was far more superior to the 19
random hypotheses, suggesting that Hypo 1 was not generated
by mere chance. Finally, the Fischer's randomization test
conrmed that Hypo 1 was statistically robust.
Fig. 17 Results of Fischer randomization test for 95% confidence level.
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Table 3 Estimated MIC values of 30 hit molecules from ligand-based
pharmacophore modeling

Molecules
name

Estimate MIC
(mg ml�1) Features Fit value

FQ-37 0.00887224 HBA, Hy, RA 5.65967
FQ-48 0.00804618 HBA, Hy, RA 5.70211
FQ-49 0.0106329 HBA, Hy, RA 5.58105
FQ-70 0.0090439 HBA, Hy, RA 5.65134
FQ-83 0.0126287 HBA, Hy, RA 5.50634
FQ-111 0.0118406 HBA, Hy, RA 5.53433
FQ-113 0.017929 HBA, Hy, RA 5.35414
FQ-120 0.0110452 HBA, Hy, RA 5.56453
FQ-131 0.0101417 HBA, Hy, RA 5.60159
FQ-132 0.0126948 HBA, Hy, RA 5.50407
FQ-133 0.0105782 HBA, Hy, RA 5.58329
FQ-137 0.0109687 HBA, Hy, RA 5.29398
FQ-139 0.011871 HBA, Hy, RA 5.53321
FQ-142 0.0109171 HBA, Hy, RA 5.56959
FQ-145 0.0205929 HBA, Hy, RA 5.29398
FQ-147 0.011372 HBA, Hy, RA 5.27077
FQ-149 0.012864 HBA, Hy, RA 5.25821
FQ-151 0.0140471 HBA, Hy, RA 5.46011
FQ-158 0.01628 HBA, Hy, RA 5.39605
FQ-162 0.0129325 HBA, Hy, RA 5.49602
FQ-171 0.00934395 HBA, Hy, RA 5.63717
FQ-172 0.0111819 HBA, Hy, RA 5.55918
FQ-177 0.0119603 HBA, Hy, RA 5.52996
FQ-182 0.010761 HBA, Hy, RA 5.23391
FQ-183 0.011389 HBA, Hy, RA 5.14912
FQ-185 0.0192373 HBA, Hy, RA 5.11541
FQ-187 0.0145925 HBA, Hy, RA 5.44357
FQ-192 0.00901582 HBA, Hy, RA 5.65269
FQ-200 0.00969673 HBA, Hy, RA 5.62107
FQ-204 0.0102625 HBA, Hy, RA 5.59645

Fig. 19 Estimated MIC (mg ml�1) and fit values of the 30 screened
molecules by using best pharmacophore model Hypo 1.

Fig. 18 The correlation graph between experimental and estimated
activity values based on Hypo 1.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
Ju

ni
 2

01
8.

 D
ow

nl
oa

de
d 

on
 3

1/
01

/2
02

6 
04

:2
9:

26
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Test-set method. Cross-validation was performed by test set
method to check the predictability power and accuracy of Hypo
1. Test set contains 20 structurally distinct compounds with
different activity range. All the test set compounds were classi-
ed relatively into three sets based on their activity values:
highly active (MIC < 0.04 mM, +++), moderately active (0.04 mM#

MIC < 0.08, ++) and low active (MIC > 0.08, +). The experimental
and estimated MIC value of both training and test set
compounds were plotted in Fig. 18 and listed out in Table S5.† It
was observed that estimated MIC value of test set compounds
using Hypo 1 was similar to that of the reported experimental
values, as supported by the correlation coefficient value (0.92).
From the results, it is evident that Hypo 1 has a precise
predictive ability which is capacitated to produce the most
reliable hits among the designed compounds can be retrieved.

Pharmacophore screening. The precisely validated pharma-
cophore model, Hypo 1, was used as query to predict the MIC
value for the 50 molecules that were screened from SBP
modeling. In order to nd out hit compounds with the lowest
MIC values, the Ligand Pharmacophore Mapping protocol was
performed with best search option. Finally, 30 compounds with
lowest MIC values (0.0080 to <0.020 mg ml�1), higher t values
(Fig. 19) and necessary pharmacophore features were short-
listed (Table 3). All the compounds were exactly mapped on to
the 1 HBA, 1 HY and 1 RA with the greater orientation t. These
well-mapped molecules with lowest MIC values were preferred
for ADMET and toxicity studies.

ADMET study. In silico ADMET assessment is a benecial
stride for predictive quantitative structure-property studies that
can be applied in drug discovery. It decreases the requirement
for expensive and expansive in vitro pharmacokinetics and
toxicity screening.38 ADMET descriptors were used to calculate
and lter out the FQ molecules with undesired pharmacoki-
netic properties among the 30 screened molecules. The phar-
macokinetics prole of all the 30 compounds and the standard
ciprooxacin under analysis were predicted by means of six
recalculated ADMET models. The pharmacokinetic analysis
23640 | RSC Adv., 2018, 8, 23629–23647
results are shown in Fig. 20. Aer examination of ADMET
biplot, it was observed that the molecules FQ-171 and FQ-204
fall outside the ADMET ellipses due to the octyloxy and non-
yloxy substitutions. These substitutions increased the lipophilic
nature of the molecules FQ-171 and FQ-204 leading to reduced
oral bioavailability and hence are shown to possess poor HIA
and BBB penetration property as per the biplot. The remaining
This journal is © The Royal Society of Chemistry 2018
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Fig. 20 Plot of PSA versus A log P for selected molecules showing
95% and 99% confidence limit ellipses corresponding to the blood–
brain barrier (BBB) and human intestinal absorption (HIA) models.
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28 molecules and the standard drug ciprooxacin fall into the
95% and 99% condence ellipses for the HIA and BBB models,
respectively.

The screened 28 molecules did not inhibit CYP450 2D6
enzyme, which conrms that the FQ analogs had no selectivity
towards the metabolic enzyme. Additionally, these molecules
Table 4 ADMET result of selected 28 compounds and standard ciproflo

Molecules
name

BBB penetration
level Absorption level Solubility level H

FQ-37 Low Good Good No
FQ-48 Low Moderate Good No
FQ-49 Medium Moderate Good No
FQ-70 Low Good Good No
FQ-83 Low Good Good No
FQ-121 Medium Good Good No
FQ-124 Medium Good Good No
FQ-120 Undened Good Good No
FQ-131 Low Good Good No
FQ-132 Low Good Good No
FQ-133 Medium Good Good No
FQ-137 Low Moderate Good No
FQ-139 Low Good Good No
FQ-142 Low Good Good No
FQ-145 Undened Good Good No
FQ-147 Low Good Good No
FQ-149 Medium Good Good No
FQ-151 Low Moderate Good No
FQ-158 Low Good Good No
FQ-162 Low Moderate Good No
FQ-172 Low Good Good No
FQ-177 Medium Good Good No
FQ-182 Low Good Good No
FQ-183 Low Good Good No
FQ-185 Low Good Good No
FQ-187 Low Moderate Moderate No
FQ-192 Undened Moderate Moderate No
FQ-200 Low Moderate Moderate No
Cipro Low Good Good No

a Abbreviations: BBB- blood–brain barrier, CYP2D6- cytochrome P450 2D6
coefficient between n-octanol and water, PSA- polar surface area.

This journal is © The Royal Society of Chemistry 2018
had excellent absorption through the cell membrane, PSA < 140
Å2 (polar surface area) and A log P 98 < 5 which satised the
reported criteria.39 It exposed that the selected molecules had
overall good BBB, absorption, solubility, hepatotoxicity, CYP2D
and PPB level (Table 4). These hit compounds were subjected to
further ltering by toxicity prediction analysis.

Toxicity risk assessment. The USFDA (US FDA, United States
Food and Drug Administration) standard toxicity risk predictor
soware TOPKAT (toxicity risk assessment screening) was used
to locate potential threat and toxicity risk fragments within the
compound.40

Twenty-eight hit molecules screened from ADMET were
assessed using TOPKAT. About 18 molecules resulted in posi-
tive response to carcinogenicity, ames mutagenicity, skin
sensitization, ocular irritancy and skin irritancy. Other details
of the predicted toxicity parameters such as rat oral LD50,
developmental toxicity potential, rat inhalational LC50, rat
maximum tolerated dose, fathead minnow LC50 and aerobic
biodegradability are summarized in Table 5. These molecules
consist of the most satisfactory results than other molecules
compared with standard ciprooxacin. The chemical structure
and properties of the selected 18 molecules are described in
Table 6. Remarkably, all the selected lead molecules complied
with the Lipinski rule of ve,41 thus having better drug-likeness.
xacin druga

epato toxicity CYP2D6 inhibitor PPB level A log P 98 PSA 2D

No <90% 3.051 113.04
Yes <90% 5.114 97.81
No <90% 4.658 97.81
Yes <90% 4.202 97.81
No <90% 3.004 106.74
No <90% 3.166 88.88
No <90% 2.623 88.88
Yes <90% 2.401 97.81
Yes <90% 3.985 97.81
Yes <90% 3.73 97.81
Yes <90% 2.385 106.74
No <90% 1.934 130.51
No <90% 3.035 113.04
No <90% 2.963 106.74
No <90% 2.75 97.81
No <90% 2.508 118.62
No <90% 1.818 101.43
No <90% 4.642 97.81
No <90% 2.737 118.62
Yes <90% 3.961 106.74
Yes <90% 4.186 97.81
Yes <90% 3.274 97.81
No <90% 2.176 109.69
No <90% 2.176 109.69
No <90% 2.988 106.74
No <90% 4.537 97.81
No <90% 5.096 88.88
No <90% 4.537 97.81
No <90% 1.435 74.932

, PPB- plasma protein binding, A log P 98- the logarithm of the partition

RSC Adv., 2018, 8, 23629–23647 | 23641
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Table 6 Details of shortlisted potent new fluoroquinolone analogs against resistant E. coli

Molecule
number Chemical structure Molecular formula

Mol. weight
(g mol�1) H-bond donor/acceptor

log P
value

FQ-37 C23H21ClFN3O5 473.8 3/6 3.051

FQ-49 C25H24ClFN2O5 486.9 2/6 4.658

FQ-70 C24H22ClFN2O5 472.8 2/6 4.202

FQ-121 C19H12BrFN2O4S 463.2 2/6 3.166

FQ-124 C19H12F2N2O4S 402.3 2/6 2.623

FQ-131 C26H19FN2O5S 490.5 2/7 3.985

This journal is © The Royal Society of Chemistry 2018 RSC Adv., 2018, 8, 23629–23647 | 23643
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Table 6 (Contd. )

Molecule
number Chemical structure Molecular formula

Mol. weight
(g mol�1) H-bond donor/acceptor

log P
value

FQ-132 C23H21FN2O5S 456.4 2/7 3.73

FQ-133 C21H17FN2O6S 444.4 2/8 2.385

FQ-137 C19H13FN2O6S 416.3 4/8 1.934

FQ-139 C23H22FN3O5S 471.5 3/8 3.035

FQ-147 C21H17FN2O6S 444.4 3/8 2.508

FQ-149 C17H11FN2O5S 374.3 2/6 1.818

23644 | RSC Adv., 2018, 8, 23629–23647 This journal is © The Royal Society of Chemistry 2018
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Table 6 (Contd. )

Molecule
number Chemical structure Molecular formula

Mol. weight
(g mol�1) H-bond donor/acceptor

log P
value

FQ-151 C25H25FN2O5S 484.5 2/7 4.642

FQ-172 C24H23FN2O5S 470.5 2/7 4.186

FQ-177 C22H19FN2O5S 442.4 2/7 3.274

FQ-182 C19H13FN2O5S 400.3 3/7 2.176

FQ-183 C19H13FN2O5S 400.3 3/7 2.176

FQ-185 C24H23FN2O6S 486.5 2/8 2.988

This journal is © The Royal Society of Chemistry 2018 RSC Adv., 2018, 8, 23629–23647 | 23645
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Conclusions

In the present study, the 3D structure of mtDNA GyrA of FQR E.
coli was predicted using homology modeling followed by
structure validation. The modeled protein encompassed muta-
tion at Ser83Leu and Asp87Asn, it's reported for FQR E. coli and
was used for screening of 204 novel FQ analogs that were
designed based on SAR. Followed by docking and interpreta-
tion, it was observed that the newly designed FQ analogs formed
van der Waals interactions with Leu83 and H-bond with Asn87
of mtDNA GyrA, from which it is clearly understood that the
novel FQ analogs possess higher inhibitory efficacy towards
mtDNA GyrA. Based on the binding energy, compounds with
the least energy values were ltered and used for further
studies. The mtDNA GyrA and the docked complex structures
were validated by RMSD and RMSF with help of MD simula-
tions. It proved that both structures were stable and no
conformational variations were observed when compare with
the MD results of WT protein. Predicted SBP model was used to
screen the designed compounds by t values, followed by
which, the LBP model Hypo 1 was used to predict the MIC value
for screened compounds. Our study proved that the multiple
pharmacophore modeling approaches are crucial for identi-
cation of the pharmacophore features required for identica-
tion of compounds that are close to standard FQ drugs. The
molecules with lowest predicted MIC value were ltered
subsequently by ADMET and TOPKAT techniques, using which,
the unwanted toxic fragments containing FQ molecules and the
numbers of false positive results were eliminated. Finally, 18
molecules were shortlisted for further synthesis by green tech-
nology and drug development to curb the UTIs caused by FQR E.
coli. On the whole, this study provides an insight on the binding
site properties of the mtDNA GyrA that can be utilized as a guide
for future studies for designing various structurally diverse
compounds from FQ family. Overall, the present work enriches
the repository of FQ drugs that can be successfully used against
FQR pathogens.
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