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Statistical models are able to predict ionic liquid
viscosity across a wide range of chemical
functionalities and experimental conditions†

Wesley Beckner,a Coco M. Maoa and Jim Pfaendtner *ab

Herein we present a method of developing predictive models of viscosity for ionic liquids (ILs) using pub-

licly available data in the ILThermo database and the open-source software toolkits PyChem, RDKit, and

SciKit-Learn. The process consists of downloading ∼700 datapoints from ILThermo, generating ∼1200

physiochemical features with PyChem and RDKit, selecting 11 features with the least absolute shrinkage

selection operator (LASSO) method, and using the selected features to train a multi-layer perceptron

regressor—a class of feedforward artificial neural network (ANN). The interpretability of the LASSO model

allows a physical interpretation of the model development framework while the flexibility and non-linearity

of the hidden layer of the ANN optimizes performance. The method is tested on a range of temperatures,

pressures, and viscosities to evaluate its efficacy in a general-purpose setting. The model was trained on

578 datapoints including a temperature range of 273.15–373.15 K, pressure range of 60–160 kPa, viscosity

range of 0.0035–0.993 Pa s, and ILs of imidazolium, phosphonium, pyridinium, and pyrrolidinium classes to

give 33 different salts altogether. The model had a validation set mean squared error of 4.7 × 10−4 ± 2.4 ×

10−5 Pa s or relative absolute average deviation of 7.1 ± 1.3%.

Introduction

Recent years have seen a huge rise in the successful applica-
tion of machine or statistical learning type approaches to the
discovery and design of new materials. Efforts such as Mate-
rials Genome Initiative (MGI) have led to the creation of pub-
lic data repositories like the Harvard Clean Energy Project,1

Materials Project,2 Open Quantum Materials Database
(OQMD),3 and Automatic FLOW for Materials Discovery

(AFLOW).4 In the area of solid crystalline materials, research
pipelines based on high throughput calculations have
enabled rapid population of massive databases. However,
many important materials for a wide range of applications
are liquids, including emerging solvent classes such as ionic
liquids (ILs) or deep eutectic solvents.5 In contrast to crystal-
line materials, liquids present a host of challenges that pre-
vent direct mimic of the successful MGI type approaches. For
example, calculation of relevant properties with molecular
simulations requires statistical sampling (e.g., molecular
dynamics (MD) or Monte Carlo) compared with the energy
minimization and structural calculations used in solid sys-
tems. Intrinsic properties of liquids show much stronger
dependence on thermodynamic state variables. Finally, in a
potential advantage compared to crystalline materials, public
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Design, System, Application

This work presents a method of developing viscosity models for ionic liquids (ILs). The process utilizes the python modules PyChem and SciKit-Learn and
data from the ILThermo database provided by the National Institute of Standards and Technology (NIST). Beginning with a 1271 feature space, the optimi-
zation strategy includes parameterizing a least absolute shrinkage selection operator (LASSO) method, using bootstrap and LASSO to select and create con-
fidence intervals for the top features, and training a neural network (NN). The final output is a NN with 11 features that is accurate for categorically differ-
ent ILs across a broad range of temperature, pressure, and viscosity. We show that the method works with reasonable accuracy even when the NN has been
trained on categorically ILs. This is especially true if, within the training data, at least either the cationic or anionic moiety has been encountered. Because
the feature space does not include interaction parameters between the ions, the NN does not need to be retrained to evaluate new cation/anion pairs, a de-
sign constraint that has been typical of recent viscosity models. Future applications could include using the NN as a fitness test in evolutionary algorithms
to search for ILs with desirable properties.
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datasets of experimental measurements such as those avail-
able from NIST Webbook offer huge opportunities for train-
ing statistical learning models.

Many of the current applications of linear and non-linear
statistical learning methods in physical sciences are inspired
by studies using quantitative structure–property relation-
ships, QSPR; or quantitative structure–activity relationships,
QSAR, which were widely used starting in the 1960s and be-
yond.6,7 The thousands of QSPR/QSAR models that have been
developed in the previous half century have incited both
praise and criticism of their reliability and limitations.8,9 In
response to this and in the interest of promoting high-quality
models, the Organization for Economic Co-operation and De-
velopment (OECD) developed five guiding principles; that a
QSAR/QSPR model should have: 1) a defined endpoint, 2) an
unambiguous algorithm, 3) a defined domain of applicabil-
ity, 4) appropriate measures of goodness of fit, robustness
and predictive-power, and 5) a mechanistic interpretation
when possible.10 In the interest of objectives 4) and 5) some
have stressed creating a small and focused set of descriptors
for model development.11 Others have stressed resourcing
the highest levels of domain area knowledge and statistical
knowledge, via collaborations between experimental and
computational scientists when necessary, to aid with these
objectives.8 However, the continued exponential growth in
available data, computing power, and open source software,
further complicates the challenge by affecting the weight one
would appropriate to any one of these principles. For in-
stance, the modern ability to access extremely large experi-
mental datasets and chemical search spaces introduces quite
a different problem than that in the pioneering work of
Hansch, Leo, and others,7 where relatively small datasets con-
fined them to a limited feature space.

Taking into account these guidelines and the realities of
dealing with ever-growing data sets,12 this paper describes
our application of statistical machine learning models to the
prediction of the viscosity of ionic liquid (IL) solvents. ILs
have great potential for application in nanomaterials synthe-
sis, bioremediation, and bio-catalysis/enzyme stabilization.5

They have also been identified as a potential supporting
electrolyte material for redox flow batteries (RFBs).13–15 Espe-
cially in the case of RFBs, the solvent viscosity is critical to
understand and control as it directly relates to the device's ef-
ficiency (via the total energy density). Within RFBs, there are
two primary methods of increasing the energy density, and
therefore efficiency, of a flow battery: 1) increasing the solu-
bility of the active material or 2) reducing the viscosity of the
electrolyte.16–18 Both of these methods are a consequence of
having to actively pump the electrolyte across a membrane to
facilitate charge transfer—one would desire that, that volume
of fluid have either a high chemical potential energy or a low
viscosity. Unfortunately these two characteristics, energy den-
sity and viscosity, have tended to be inversely correlated. It is
for this reason that an accurate algorithm to determine vis-
cosity based on the molecular constituents of an IL is ex-
tremely valuable. With these challenges in mind, we set out

to use the public data available in the NIST ILThermo19 data-
base for training and testing of different predictive models.

Apart from RFBs, in many applications the viscosity of the
IL plays a huge economical factor; essentially whenever active
transport of the IL is needed. Because of this, many predic-
tive models of IL viscosity have been attempted. They have,
however, been largely unsuccessful due to either not repro-
ducing experimental values across categorically different ILs
or requiring the use of IL-specific experimental data in
predictions.20–30 Briefly, Matsuda et al. employed group con-
tribution (GC) type descriptors with some accuracy. Their
model, however, did not perform very well on a test dataset,
reporting an R-squared value of 0.6226.30 Another GC ap-
proach was introduced by Gardas and Coutinho, where they
fit the GC-type inputs to the Vogel–Tammann–Fulcher (VTF)
equation. This is considered to be one of the most accurate,
temperature dependent viscosity models to date but is lim-
ited to a narrowly defined set of ILs.25,28 Zhao et al., used GC-
VTF methods to parameterize a UNIFAC-VISCO model. While
they reported a low error rate for the regression on their
training data, their model is meant to predict binary mixtures
of ILs and so is not very useful in terms of exploring a struc-
tural search space.31 As a last look at the GC-type models,
Padusyzński & Domańska did an extensive data scraping of
the literature to produce a feed forward artificial neural net-
work (FF-ANN) using GC-type inputs and Fatehi et al. applied
an FF-ANN to GC-type inputs supplemented with electronega-
tivity descriptors.25,32 Their models did very well across many
IL types. They did not however, examine how their models
might perform given an IL type from outside their training
data, something we determine for our model in this work.

Other attempts at IL viscosity models have been made with-
out the use of GC-type inputs, notably, hole theory models by
Bandrés et al. and volumetric VTF models by Slattery et al.,
but have required the use of experimental data in some form
or another.27,29 In this work, we introduce a method to accu-
rately predict viscosity for categorically different ILs and broad
ranges of temperature (T), pressure (P), and viscosity. Addi-
tionally, we explore the sensitivity of the approach to underly-
ing molecular structure and include these results in the ESI.†

The remainder of this manuscript is organized as follows.
The next section combines methodological details with the
model development. Following this we apply linear and non-
linear statistical learning methods to understand key struc-
tural predictors of viscosity and provide robust statistical anal-
ysis on a large data set of experimentally measured IL
viscosities. Finally, we discuss the applicability of the model
across different IL types as well as the underlying features that
explain the variance in the viscosity across our training data.

Methods and model development
Data collection and structure dependence

Many prior attempts to model IL viscosity21,22,31,33–35 required
narrow definition of cation or anion classes. Therefore, we fil-
tered our starting dataset to emphasize variance in structure
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in an attempt to understand the limits of a single statistical
model. We began with 1405 experimental data points from
the ILThermo database and screened for a T range of 273.15–
373.15 K, P range of 60–160 kPa, and viscosity range of
0.0035–0.993 Pa s. The original dataset (including experimen-
tal references) before screening is available in the ESI† as
viscosity_data.csv. Classes of structure included imidazolium,
phosphonium, pyridinium, and pyrrolidinium based salts. Af-
ter this initial screening, the final dataset contained 723 data
points consisting of 33 unique salts; 22 anions and 16 cat-
ions. We then created a subset of 28 unique imidazolium
salts containing 403 data points including a temperature
range of 273.15–373.15 K, pressure range of 100–160 kPa, vis-
cosity range of 0.004229–0.982 Pa s. We then applied the fol-
lowing protocol to this subset to evaluate how our general
model might perform on salt-types not included in its train-
ing data, see Fig. 1.

Feature generation

The open source python packages PyChem36,37 and RDKit38

were used to generate 633 physiochemical descriptors for
each cation and anion in the starting dataset (1266 per IL).
T and P, 1/T, T2, and lnĲT) were included in the feature set to
give a final data frame of dimensions 723 by 1271. All fea-
tures were centered about zero and scaled to unit variance.
After removing columns with zero variance the final data
frame consisted of 723 data points with 771 descriptors. This
data frame is included in the ESI† as viscosity_processed.csv.

LASSO: model parameterization

The least absolute shrinkage and selection operator (LASSO)39

algorithm from the SciKit-learn40 machine learning toolkit was
used to shrink the feature space. The primary hyper-

parameter of the LASSO model (λ) was optimized in three
separate schemes: 5-fold cross-validation (CV), shuffle-split,
and bootstrap confidence test algorithms (see Fig. 2).
Explained briefly, these algorithms break the data into 80/20
training/testing sets for 300 iterations. In the bootstrap
scheme, the final training set is sampled from the training
fraction with replacement, offering the possibility of the
same data point being sampled multiple times. The shuffle-
split schematic is identical to bootstrap apart from that the
data is sampled without replacement; the original dataset is
randomly shuffled and split between train and test. 5-fold CV
was performed with slight modification. Keeping in line with
the theme of the other methods, a random 80/20 split was
made of the original dataset. 5-fold CV was then
implemented in the standard way on the 80% fraction until
the next iteration, in which another random 80/20 split was
made. Each of these algorithms was implemented 300 times;
trained and the mean squared error (MSE) evaluated on ei-
ther 1) the testing portion of the dataset (bootstrap and shuf-
fle-split) or 2) the aggregate from the five folds (5-fold CV).

LASSO: feature selection

The three confidence tests provided a starting point for fea-
ture shrinkage, however, the statistical variance in the test
MSE indicated these optimum λ values were highly depen-
dent on the randomly selected training data. Noting the boot-
strap scheme in the bottom panel of Fig. 2, the average test
MSE for a λ value of 0.021 was still within a standard devia-
tion of the same test MSE for a λ value as high as 0.054 (or
log λ −2.9 in Fig. 2)—meaning, these two λ values share the
same test MSE 68% of the time. While not certain, it is rea-
sonable to posit that a λ value of 0.021 may be leaking noise
into the model based on training data selections with

Fig. 1 723 data points with temperature, pressure, and viscosity ranges
of 273.15–373.15 K, 60–160 kPa, and 0.0035–0.993 Pa s, respectively.
Inset: 453 data points with temperature, pressure, and viscosity ranges
of 273.15–373.15 K, 100–160 kPa, and 0.004229–0.982 Pa s, respectively.
The imidazolium base structure is illustrated in the whitespace.

Fig. 2 Shuffle-split, cross validation, and bootstrap algorithms were
used to systematically search for the optimum λ value, the tuning
parameter that determines the shrinkage penalty for LASSO. The red
crosshairs in the bootstrap panel show that the most conservative
(highest) value of λ, 0.021, is still within a standard deviation of the test
MSE of a λ value as high as 0.054, i.e. a good selection for λ is highly
contingent on the population of training data.
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incidental patterns in their feature vectors not related in any
physical way to viscosity. To test for this, we selected 0.021 as
the value for λ and trained the LASSO models on
bootstrapped datasets for 1000 iterations to obtain confi-
dence intervals for individual feature coefficients, see Fig. 3.
A final, bootstrapped model was taken as the mean value of
every non-zero return of the coefficients. This model was
then used to predict viscosities for a validation set. Features
were sorted by the absolute value of their mean and progres-
sively removed from the model to determine at what point
the test MSE no longer improved, see the insets of Fig. 3. Test
MSE no longer improved after the top 11 most influential fea-
tures were included in the models—regardless of whether all
four categories of salt or only imidazolium-type salts consti-
tuted the training data. These top 11 features had p-values
close to 0. After converging on the top 11 features, the LASSO
models were trained at λ values ranging from 0 to 1 on their
respective feature vectors. The expected approach to zero of
the coefficients for each model are shown in Fig. 4.

Neural network

The respective selected feature sets were used to train neural
networks. The random search algorithm, RandomizedSearchCV
was used to parameterize the multilayer perceptron (MLP) Re-
gressor algorithm (a type of FF-ANN), both from SciKit-Learn.
In the random search algorithm, ten settings were tested

among the following distributions for the specified parameter.
For activation: identity, logistic, tanh, and relu; for solver: lim-
ited memory Broyden–Fletcher–Goldfarb–Shanno algorithm
(lbfgs), stochastic gradient descent (sgd), and adam; for learn-
ing rate: constant, invscaling, and adaptive; and a uniform dis-
tribution from zero to one was sampled for the regularization
parameter, α. The listed parameter values were sampled with-
out replacement while the uniform distribution for α was sam-
pled with replacement. The final, selected settings for the spec-
ified parameter were the following. For activation: tanh,
specifying a hyperbolic tan function for the activation function
of the hidden layer; for solver: lbfgs, specifying a quasi-Newton
method of solving for the weight optimization (a fast and accu-
rate solver for smaller datasets, note that this stochastic solver
recalculates its learning rate, α, at every step and nullifies any
user-specified starting α); and max_iter: 1e8, the maximum
number of iterations.

The remaining parameters were left at their default values:
batch_size: auto; early_stopping: false; hidden_layer_sizes:
100; random_state: none; validation_fraction: 0.1; warm_start:
false. A full description of these parameters are available in
the SciKit-Learn documentation.40

Final evaluation

For both the LASSO and the final ANN, bootstrapping was
performed to estimate the variance in the predictions of a

Fig. 3 Confidence intervals for the most influential features in the respective LASSO models. Insets show that the mean squared error does not
improve past the 11 (red, vertical bar) most influential features. Models were trained 1000 times on bootstrapped datasets. X-axis displays the abso-
lute values of the coefficients (values below the red, horizontal line are negative). Y-axis is sorted in ascending order (top to bottom) by the mean
value of the coefficient. Green line indicates the median value, red box indicates the mean value, blue box indicates the 2nd and 3rd quantiles, and
small, red bars indicate the range. The p-values for all coefficients are very close to zero, with the highest being 1 × 10−66.
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validation set. In the typical case, bootstrapping is a method
of “internal validation” where subsets of the data are sam-
pled with replacement and the resulting model is evaluated
on the data excluded from the sample. The process is re-
peated to obtain error estimates for the entire dataset.41,42

We adapted this typical use case with “external validation”
i.e. a portion of our dataset was reserved for validation, was
never included in the model training, and the resulting
models were used to obtain error estimates for this validation
set. The process was as follows. For the ANN model, an 80–
10–10% split of the entire dataset was used for train-test-vali-
dation. Bootstrapping was performed on the 80–10% sets
and validated on the same 10% validation set for 300 itera-
tions (i.e. the validation set data never entered the training
data). The same procedure was performed on the
imidazolium salt-types only—this time using the other salt-
types as the validation set—to investigate how the general
model might perform when exposed to salt-types not in-
cluded in its training data. The procedure was identical for
the LASSO model with the exception that a 90–10% split was
made between training and validation since a test set is not
required to determine the LASSO coefficients.

Results and discussion
LASSO: feature selection

There have been prior approaches to develop models that
predict viscosities for ILs. Few of them, however, have been
successful across categorically different ILs.20–24 We investi-
gated the dependency of our approach on structure by apply-
ing our procedure on only imidazolium-type salts, investigat-
ing the difference in selected features from the general
model, and evaluating the ANN performance on the
remaining three categories of salts. These selections of the
data had a similar distribution of viscosity, T, and P to isolate
the dependency of the model on core IL structure, see Fig. 1.

The LASSO was used to shrink the physiochemical feature
space. The selected features were similar between the
imidazolium and general model, see Fig. 3. Both models con-
sistently under-predicted viscosity values whose true values
were above 0.2 Pa s and over-predicted the values of those be-
low. The general LASSO model on average had a validation
set error of 0.0108 ± 0.0008 Pa s while the imidazolium
LASSO model had a higher validation set error of 0.025 ±
0.003 Pa s when evaluated on non-imidazolium salts and—as
expected—a lower validation set error when evaluated on
imidazolium salts, 0.0079 ± 0.0006 Pa s.

Description of the selected features

In the following we briefly explain the features that were se-
lected by the imidazolium or general model, see also Table 1.

The features are described extensively in the (ESI†) and
additional information can be found in the corresponding
references.

Spatial autocorrelation descriptors. Autocorrelation is a
general statistical measure of, broadly defined, how a prop-
erty of pairwise variables spaced at temporal or spatial inter-
vals are more (positive autocorrelation) or less (negative auto-
correlation) similar than they would be for a set of stochastic
observations. Several autocorrelation calculations have been
introduced in the past century. In ecological processes these
have been appropriated primarily due to the importance of
stochastic independence to apply the assumptions of classi-
cal statistics.43 Perhaps more fundamentally, time correlation
functions have lent themselves to the exact mathematical ex-
pression for transport coefficients such as those found in the
Green–Kubo relations. Many spatial autocorrelation functions
are included in RDKit.

In the following acronyms the small letters signify the type
of weighting used in the autocorrelation: atomic masses (m),
van der Waals volumes (v), Sanderson electronegativities (e),

Fig. 4 Coefficient values versus log λ for the most influential features in the imidazolium and general model, respectively.
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atomic electronegativities (ae), and polarizabilities (p). The
number represents the topological distance between atoms,
i.e., the lag associated with the atomic property evaluated at
those atomic points. Our models selected two Moran autocor-
relations:44 MATSe5-cation and MATSp5-anion; two Burden
autocorrelations:45 BCUTae5-cation and BCUTae2-cation; and
one Geary autocorrelation:46 GATSp1-anion.

Inspecting the coefficients in Fig. 3, a negative Moran au-
tocorrelation of the Sanderson electronegativities and
polaraizabilities of the 5th topographical interval coincides
with a decrease in viscosity in both models. In the
imidazolium model, a positive Geary autocorrelation of polar-
izability on the 1st topographical interval coincides with an
increase in viscosity. Burden autocorrelations of atomic
electronegativies of the 2nd (imidazolium) and 5th (all salts)
topographical interval coincides with an increase in viscosity
in both models. Also of note, even with the large variance
(the greatest in all the selected features by the model) in the
Burden coefficients, the associated p-value is extremely low
(1 × 10−66), indicating a high probability that this is a descrip-
tive feature for viscosity.

Electrotopological state (E-state) descriptors. The E-state
formalism was introduced as a way to economically navigate
molecular structure space. In this formalism three intrinsic
states of a molecular substructure within a molecule are
quantified: its elemental content, its valance state (electronic
organization), and its topological state in regard to its
atomic neighbors.47–50 The idea for this approach is that the
information density per descriptor can be far greater than
an atomic substructure count, where relational/environ-
mental information is lost. However, the “leanness” of the
descriptor comes at a cost: ambiguity is introduced when
multiple fragments of the same substructure are contained
in the molecule. This has been the subject of some studies
where either averages, max/min, or sums are returned for
atomic fragments or the molecule as a whole.48,49 One
E-state descriptor was selected by the general model:
Smax14-anion, which is the maximum E-state of any carbon
with a triple bonded neighbor. A high maximum E-state
for this molecular substructure decreases the viscosity of
the IL.

Molecular operating environment (MOE)-type descriptors.
The MOE-type descriptors use connectivity information and
van der Waals radii to calculate the atomic van der Waals
surface area (VSA) contribution of an atom-type to a given
property.11 Our models selected three MOE-type descriptors.
Gasteiger51 partial charges (a rapid, iterative approach to cal-
culation of partial charges using only topological data):
PEOE-VSA12-cation (both models, increases viscosity), PEOE-
VSA6-anion (imidazolium model, increases viscosity); and
E-state indices: E-state-VSA3-cation (both models, decreases
viscosity).

Basak descriptors. Basak descriptors contain weighted
structural and chemical information content for describing
physicochemical properties.52–54 Our models selected two of
these types of descriptors. SIC0-anion, complementary infor-
mation content with 0th order neighborhood of vertices in a
hydrogen filled topological graph (general model, decreases
viscosity). IC4-cation, structural information content with 4th
order neighborhood of vertices in a hydrogen-filled topologi-
cal graph (imidazolium model, increases viscosity).

Connectivity descriptors. The connectivity descriptors are
distinguished by path, cluster, and chain calculations of
bond orders (fragments of one bond, two bonds, etc.).45 They
are similar to the Basak and E-state families of descriptors in
that a count is made of a specified fragment type. With the
connectivity descriptors however, the final score for a given
fragment is not influenced by the occurrence of other frag-
ments (as is the case with structural information i.e. entropic
calculation in Basak) and all valance/electronic state of
atoms/fragments are lost (which are encapsulated in the
E-state formalism). Our models selected one of these types of
descriptors. Chi4c, a simple fourth order cluster index (gen-
eral model, increases viscosity).

Topological descriptors. Hato-anion, a harmonic topologi-
cal index, is a metric of molecular branching proposed by
Narumi.55 One advantage of this descriptor is that the con-
nectivity state of every atom is used in the calculation of the
index, leading to a highly unique index for a given molecule.
In the Hato calculation, a lower value indicates a higher de-
gree of molecular branching (e.g. neopentane will have a
lower index than pentane). Both models selected this

Table 1 Brief summary of selected descriptors by LASSO

Descriptor Type Description

bcute5 Autocorrelation Burden autocorrelation of Sanderson electronegativity with topological interval 5
bcute2 Autocorrelation Burden autocorrelation of Sanderson electronegativity with topological interval 2
MATSp5 Autocorrelation Moran autocorrelation of polarizability with topological interval 5
MATSe5 Autocorrelation Moran autocorrelation of Sanderson electronegativity with topological interval 5
GATSp1 Autocorrelation Geary autocorrelation of polarizability with topological interval 1
PEOEVSA12 MOE Sum of atomic van der Waals surface area contributions to partial charges within 0.25–0.3
PEOEVSA6 MOE Sum of atomic van der Waals surface area contributions to partial charges within −0.05–0
EstateVSA3 MOE Sum of atomic van der Waals surface area contributions to electropological states within 0.717–1.165
SIC0 Basak Complementary information content with 0th order neighborhood of vertices in a hydrogen-filled graph
IC4 Basak Structural information content with 4th order neighborhood of vertices in a hydrogen-filled graph
Smax14 Electropological Maximum electrotopological state of sp hybridized carbon
Chi4c Connectivity Fourth order cluster index
Hato Topological Topological index of molecular branching
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descriptor and it is the most influential molecular-structure
based feature leading to a decrease in viscosity (i.e. highly
branched anions lead to a more viscous salt).

Constitutional descriptors. Nhyd-anion is a count of hy-
drogen atoms contained in the molecule. Both models se-
lected this feature as the most influential structural compo-
nent leading to an increase in viscosity.

Comparison between models

Of the five cation features selected by the imidazolium
model, only MATSe5, E-state-VSA3, and PEOE-VSA12 were in-
cluded in the general model. It is worth nothing, however,
that the similar variance and mean value of the Burden fea-
tures (BCUTEae5 and BCUTae2) for the cation imply a covari-
ant relationship between these two variations of
autocorrelating atomic electronegativity. A similar number of
the anion-specific features are shared by both models: nhyd,
MATSp5, and Hato. Indeed, the anionic features nhyd and
Hato are extremely influential in both models (the absolute
value of their coefficients are large), second only to logĲT).
For the cation-specific features: the imidazolium model in-
cluded BCUTae2, and IC4 while the general model included
BCUTae5. For the anion-specific features: the imidazolium
model included GATSp1 and PEOE-VSA6 while the general
model included Chi4c, SIC0, and Smax14. Interestingly, de-
spite the structural difference between the two models being
that of the cationic moiety, the largest difference in the fea-
ture vectors pertains to the anion (four shared features with a
fifth that is likely to be covariant for the cation compared to
three shared features for the anion). At first this would ap-
pear unlikely, even more so when considering the cation/an-
ion differences between the models—22 anions and 16 cat-
ions for the general model and 21 anions and 10 cations for
the imidazolium model. That is to say, even though the
imidazolium model is only missing a single anion compared
to the general model, it appears to select quite a different set
of anion-specific features. However, considering the large co-
efficient values for the Hato and nhyd descriptors, the overall
effect of the anionic moiety on viscosity is very similar for
both models, as these two features have an overwhelming in-
fluence compared to the other anionic features that are
present.

In addition to performing 1000 bootstrap iterations of
training LASSO at the optimum λ value, we also evaluated the
coefficient values of those top selected features at λ values
ranging from 0.01 to 1 to track their approach to 0. One
might expect the feature coefficients to fall to zero in the or-
der of their absolute value ranking at λ 0.021. However, since
two features working in tandem might better approximate
the descriptive quality of one, this may very well not be the
case.

There are clear parallels in both models. The features ap-
proach zero in three separate clusters. logĲT) formed the first
cluster in solitude, holding its coefficient value ahead of the
other features at higher values of λ. The models begin to dif-

fer in the next two clusters. The inverse-ranked approach to
zero of the second cluster is as follows; beginning with the
imidazolium model: BCUTe2-cation, Hato-anion, MATSe5-
cation, Estate-VSA3-cation, GATSp1-anion; for the general

Fig. 5 Viscosity prediction versus experimental value for the models.
The bootstrap was performed on 90% of the available data. The
remaining 10% of the data is shown in the figure, along with the
prediction and error estimates from the bootstrap models. These error
estimates are produced from the variance in the aggregate predictions
of all the bootstrapped models. Some of the predictions have a
relatively high variance compared to others. There are two possible
explanations for this. For one, higher viscosities will inherently have a
larger variance simply due to scaling (the same percent variance will
appear larger for higher raw values of viscosity, note the two
phosphonium predictions in the top right corner, bottom panel).
Second, some of the anion-types occur in salt pairs less often than
others. Subsequently, whether or not that anion appeared in the
subsampled training set will influence the prediction on the validation
datum. The three imidazolium-type salts with the highest variance
contained either tetrafluoroborate or dimethylphosphate as their an-
ions. The inset numbers indicate the value and standard deviation of
the error for both models. The ANN models had, on average, mean
squared errors of 4.7 × 10−4 Pa s for all data points in the validation set
and a standard deviation of 2.4 × 10−5 Pa s for viscosity values ranging
from 0.006 to 0.99 Pa s—an error that translates into a relative abso-
lute average deviation (RAAD) of 7.1 ± 1.3%. Top: LASSO model; bot-
tom: ANN model.
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model: Smax14-anion, BCUTe5-cation, MATSe5-cation, and
Hato-anion. The inverse-ranked approach to zero of the third
cluster is as follows; beginning with the imidazolium model:
nhyd-anion, PEOE-VSA6-anion, PEOE-VSA12-cation, MATSp5-
anion, and IC4-cation; for the general model: SIC0-anion,
Chi4c-anion, Estate-VSA3-cation, nhyd-anion, MATSp5-anion,
and PEOE-VSA12-cation.

There are a few interesting observations worth noting.
First, although the Burden descriptors had the highest vari-
ance, p-values, and very low coefficients at λ 0.021, they both
were included in the second cluster. This indicates that al-
though descriptive, the response of this variable to selections
of the underlying training data varies greatly. Second, the
Moran autocorrelations MATSe5 and MATSp5 appear covari-
ant: they both approach zero but as MATSp5 becomes zero,
MATSe5 begins to increase and doesn't hit zero until the sec-
ond cluster. Lastly, a qualitative comparison can be made
between logĲT) and the molecular coefficients. logĲT) ap-
proaches zero on a very smooth curve, regardless of the be-
havior of the other features. In comparison, the
physiochemical features in the model approach zero tortu-
ously, acting in response to one another to some degree in
all cases.

Neural network

The general ANN model was highly accurate on its validation
set, with validation set MSE of 4.7 × 10−4 ± 2.4 × 10−5 Pa s,
see Fig. 5. Recently, Zhao, et al.23 published a UNIFAC-VISO
model of IL viscosity for the same class of structures but a
narrower range of temperature (293.15–363.15 K) and a single
pressure (0.1 mPa). Their approach resulted in a relative ab-
solute average deviations (RAAD) of 3.92% on a test set with

the caveat that their test set contained structurally identical
ILs as that of the training data, only differing by the mole
fractions of the binary IL mixtures. Converting our validation
MSE to RAAD,56 we have a comparative performance in our fi-
nal general ANN model of 7.1 ± 1.3 %. Table S1 in the ESI†
breaks this RAAD down by structure and T. Perhaps more rel-
evant, Padusyzński & Domańska reported a testing set RAAD
(reported as AARD in their publication) of 14.7% for their GC
FF-ANN model for nine classes of pure ILs with a broad range
of temperature and pressure (253–573 K and 0.1–350 mPa, re-
spectively). A comparison of these results and others are
presented in Table 2.

As discussed throughout this document, we are interested
in how the general model would perform when predicting
viscosity for salt-types not included in its training data (i.e.
imidazolium, phosphonium, pyridinium, and pyrrolidinium).
As a proxy for this, we applied the same protocol to the
imidazolium salt-types only and—after observing the changes
in selected descriptors in the previous section—evaluated the
model on the other three salt-types. This model had a valida-
tion set MSE of 0.006 ± 0.001 Pa s when evaluated on
imidazolium ILs and a validation set MSE of 0.08 ± 0.01 Pa s
when evaluated on the non-imidazolium ILs: phosphonium,
pyridinium, and pyrrolidnium. This leads us to emphasize
caution when applying the general model to salts that are
very structurally different than those used in the training
data. The comparison of prediction vs. experimental viscosity
is presented in the ESI,† Fig. S1. To our knowledge, other sta-
tistical models in the literature have not performed a similar
such evaluation. We stress, however, that considering salt-
types not in the training data is paramount in the construc-
tion of a predictive model for the purposes of designing as-
of-yet undiscovered ILs.

Table 2 Summary of exemplary IL viscosity models

Structurally
predictive

Pure or
mixed IL Model Parameters

Data
points

Test set
error Disadvantage Reference

Yes Pure Physiochemical
FF-ANN

11 723 7.1 % Higher test set error than
comparable FF-ANN

Our model

Yes Pure Physiochemical
FF-ANN

13 736 1.3 % Not tested on categorically
different ILs from training data

Fatehi et al., 2017
(ref. 32)

Yes Pure GC FF-ANN 242 13 470 14.7 % Not tested on categorically
different ILs from training data

Padusyzński & Domańska,
2014 (ref. 25)

No Pure/mixed UNIFAC-VISCO
GC VTF

16/32a 52 3.92 % Requires pure IL experimental
viscosity data

Zhao et al., 2016
(ref. 23)

No Pure/mixed QSPR N/A 5046 N/A QSPRs proposed without model Yu et al., 2012
(ref. 26)

No Pure Hole theory 7 8b N/A Requires experimental surface
tension data

Bandrés et al., 2011
(ref. 27)

Yes Pure GC VTF 3/24c 482 13–21%d Applicable to limited set of ILs Gardas & Coutinho, 2009
(ref. 28)

Semi Pure Volumetric
VTF

3 23 9% Some coefficients are anion-specific,
others require QM calculations

Slattery et al., 2007
(ref. 29)

Yes Pure GC 8 300 N/Ae Poor prediction for test dataset Matsuda et al., 2007
(ref. 30)

a 16 parameters per IL pair (32 parameters for binary mixtures). b At least 200 data points collected per IL, eight ILs were included in final
regression. c Three parameters for VTF model, two of which were determined from 24 GC parameters. d The test datasets were provided by
Padusyzński & Domańska, not the original authors. e The authors reported an R2 of 0.6226 on a test data set.
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Conclusions

We have demonstrated a method of generating accurate
models for viscosity using publicly available data from
ILThermo and open source software PyChem, RDKit and
SciKit-Learn. We present a model that is highly predictive of
viscosity across categorically different IL's: imidazolium,
phosphonium, pyridinium, and pyrrolidinium based salts.
We also evaluated the methodology by which we produced
those models; applying the same steps but to a structural
separate subset of our data—the imidazolium salts—and
tested the model on salt-types it had not seen in its training
set, the phosphonium, pyridinium, and pyrrolidinium salts.
We found that with structurally different training data, the
imidazolium model was able to encapsulate viscosity trends
for the other salt-types.

The methodology of using LASSO to pre-select features to
then use in a neural network allowed us to benefit from the
high interpretability of the LASSO method but also the high
flexibility of the neural net. That is, we could evaluate the
physical/chemical significance of the features that were se-
lected while also arriving at a highly accurate model with the
final neural network. It also allowed more rapid parameteri-
zation of the neural net and to avoid overfitting to our train-
ing data; i.e. keeping the feature size to training data ratio as
low as possible.

In future work, the full value of the models should be ac-
tualized by combining them with structural search algo-
rithms to high-throughput screen for low viscosity ILs. One
of the most promising search algorithms recently introduced
have been genetic algorithms, which allow for flexible fitness
tests and a tree-like search structure. The fitness tests can
prioritize certain model features, such as those ranked
highest by the LASSO coefficient versus log λ evaluations,
searching a semi-infinite structural space.
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