Dynamical behavior of compound vesicles in wall-bounded shear flow

Abstract

We report a numerical study addressing the dynamics of compound vesicles confined in a channel under shear flow. The system comprises a smaller vesicle embedded within a larger one and can be used to mimic, for example, leukocytes or nucleate cells. A two-dimensional model, which combines molecular dynamics and mesoscopic hydrodynamics including thermal fluctuations, is adopted to perform an extended investigation. We are able to vary independently the swelling degree and the relative size of vesicles, the viscosities of fluids internal and external to vesicles, and the Capillary number, so to observe a rich dynamical phenomenology which goes well beyond what observed for single vesicles, matching quantitatively with experimental findings. Tank-treading, tumbling, and trembling motions are enriched by dynamical states where inner and outer vesicles can perform different motions. We show that thermal fluctuations are crucial during trembling and swinging dynamics, as observed in experiments. Undulating motion of the external vesicle, characterized by periodic oscillation of the inclination and buckling of the membrane, is observed at high filling fractions. This latter state exhibits features that are shown to depend on the relative size, the swelling degree of both vesicles as well as on thermal noise lacking in previous analytical and numerical studies.

Graphical abstract: Dynamical behavior of compound vesicles in wall-bounded shear flow

Article information

Article type
Paper
Submitted
28 Oct 2025
Accepted
17 Nov 2025
First published
18 Nov 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025, Advance Article

Dynamical behavior of compound vesicles in wall-bounded shear flow

A. Lamura, Soft Matter, 2025, Advance Article , DOI: 10.1039/D5SM01079A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements