Advancements in binary and ternary transition metal-based composites for high-performance supercapacitors: a comprehensive review
Abstract
As the demand for efficient and high-performance energy storage devices continues to rise, supercapacitors have emerged as a promising technology due to their rapid charge–discharge capabilities and long cycle life. Among the various strategies to enhance supercapacitor performance, binary and ternary transition metal-based composites have garnered significant attention. These composites offer a unique approach by combining multiple transition metals, which synergistically enhance electrochemical performance through both physical and chemical charge storage mechanisms. This review provides an in-depth analysis of the latest research on binary and ternary transition metal composites, discussing their electrochemical properties, synthesis methods, and performance metrics in supercapacitor applications. The combination of different transition metals in composite materials as energy storage electrodes allows for a broader voltage window, increased energy density, enhanced power density, and improved cycling stability. Additionally, we discuss the structural and morphological features of these composite materials, such as porosity, surface area, and conductivity, which play critical roles in determining overall performance. Furthermore, the review highlights the challenges faced in optimizing these composites, including material scalability, cost-effectiveness, and long-term stability. The paper also outlines future research directions, emphasizing the potential of binary and ternary transition metal-based composites in supercapacitor applications, providing insights into potential avenues for the next generation of high-performance energy storage systems. This review thus provides valuable insights into both the current state and future potential of these composite materials in high-performance supercapacitors.
- This article is part of the themed collection: 2025 Reviews in RSC Advances