Colloidally synthesized and bandgap-engineered luminescent titanium nitride quantum dots

Abstract

Semiconductor nanomaterials, such as cadmium, lead, and mercury chalcogenides, as well as lead halide perovskites, exhibit excellent optical, electronic, photonic, and photovoltaic properties, making them promising for applications in solar cells, LEDs, and X-ray photodetectors. However, heavy metals, such as Cd, Hg, and Pb, raise concerns about the use of these nanomaterials in devices and the recycling and disposal of such devices. Therefore, developing greener luminescent materials is crucial for sustainable optoelectronic and photovoltaic technologies. We report a colloidal chemical method for engineering brilliantly luminescent titanium nitride (TiN) quantum dots showing tunable optical bandgap (1.8~2.2 eV) and multicolor photoluminescence. We demonstrate the TiN quantum dot structure and properties using HRTEM, SEM-EDX, XRD, XPS, Raman spectroscopy, and steady-state and time-resolved fluorescence spectroscopy, confirming their size, morphology, chemical composition, crystalline structure, bandgap, and luminescence properties. This research presents luminescent TiN quantum dots as promising substitutes for metal chalcogenides and lead halide perovskites in sustainable electrooptical and photovoltaic technologies.

Supplementary files

Article information

Article type
Communication
Submitted
04 Aug 2025
Accepted
26 Sep 2025
First published
02 Oct 2025

Nanoscale, 2025, Accepted Manuscript

Colloidally synthesized and bandgap-engineered luminescent titanium nitride quantum dots

A. Maladan, T. Okamoto, M. Kumar, M. F. Khatun, Y. Matsuo, C. Subrahamayam and V. Biju, Nanoscale, 2025, Accepted Manuscript , DOI: 10.1039/D5NR03290C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements