Low-energy and simple synthesis of individualized cationic pH-responsive tertiaryaminated cellulose nanofibers and chitin nanocrystals by mechanochemistry and aging

Abstract

Cellulose and chitin nanomaterials are promising sustainable materials that exhibit attractive mechanical, optical, thermal, and chemical properties. Cellulose nanofibers (CNFs) have found applications to the field of packaging, reinforced composite or biomedical applications.Introducing charged functional groups onto these nanomaterials is a proven strategy to improve their dispersibility and processability, as well as their properties, such as adsorption capacity. The use of high energy defibrillators has remained necessary to access CNFs despite the introduction of surface charges prior to increase the efficiency of nanomaterial extraction. To date, there is no known synthesis of cationic CNFs (CCNFs) that is both energy efficient in the defibrillation, and chemically efficient in material modification. Herein we report a strategy to access CCNFs directly from once-dried wood pulp through mechanochemical and aging-based nucleophilic substitution, followed by a short sonication. This treatment introduces pH-responsive cationic diethylethylamine (DEEA) groups with a degree of substitution (DS) as high as 0.80 (amine content of 3.29 mmol g -1 ) without the use of excess reagents. The combination of short mechanochemical treatment (10 min), with aging and sonication allows access to high quality, 2nm-wide, 1-μm-long CCNFs with high crystallinity of 56.6% and high ζ-potential of 68.10 ± 1.43 mV from sheets of pulp. The method was also applied to powder microcrystalline cellulose and chitin, to afford cationic nanocrystals of cellulose and chitin.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
21 Aug 2025
Accepted
10 Oct 2025
First published
13 Oct 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale Horiz., 2025, Accepted Manuscript

Low-energy and simple synthesis of individualized cationic pH-responsive tertiaryaminated cellulose nanofibers and chitin nanocrystals by mechanochemistry and aging

A. H. Moores, G. Yang, Y. Tomita, A. Richard, S. Fujisawa, E. Lam and T. Saito, Nanoscale Horiz., 2025, Accepted Manuscript , DOI: 10.1039/D5NH00597C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements