Toward durable anti/de-icing technologies: liquid-like surfaces with engineered abrasion resistance
Abstract
With the popularization of airplanes, high-speed railways and high-voltage transmission lines, the economic and safety problems caused by ice accretion have become increasingly serious. In the past few decades, SHS and SLIPS have made progress in anti/de-icing surfaces. However, their durability has been challenged. In recent years, liquid-like surfaces (LLS) prepared by grafting functional polymers have been proven to significantly improve the durability of anti/de-icing surfaces, thus achieving diverse, large-scale and controllable performances. Herein, we review the wetting mechanism and anti/de-icing mechanism of LLS. Then, the factors influencing the anti/de-icing performance of LLS are introduced, including their grafting density, relative molecular weight, branched structure and end groups. Subsequently, taking polymer brushes, polymer networks, storage-functional polymer networks and brush-like polymer networks as four types, the preparation methods and anti/de-icing performance of LLS are elaborated. In addition, in the case of photothermal anti/de-icing coatings, LLS can endow them with excellent transparency to meet the requirements of special application environments. Finally, the challenges and obstacles of LLS in the anti/de-icing field are discussed, and the great potential of LLS in this field in the future is prospected.
- This article is part of the themed collection: Recent Review Articles