Issue 13, 2017

Expanding applications of SERS through versatile nanomaterials engineering

Abstract

Surface-enhanced Raman scattering (SERS) spectroscopy has evolved into a cross-disciplinary analytical technique by unveiling relevant chemical, biological, material, and structural information. The focus of this review is on two critical properties for successfully expanding applications of SERS spectroscopy: quality of the plasmonic substrate and molecule localization to the substrate. In this review, we discuss recent work on quantifying SERS distance dependence, key factors for substrate characterization and performance evaluation, expansion of SERS applications through substrate development for UV plasmonics and short-distance capture strategies for optimizing analyte-surface structures. After surveying the recent developments of these seemingly disparate fields, we suggest new research directions that may originate from a synergistic blend of all the herein discussed topics. Finally, we discuss major challenges and open questions related to the application of SERS for understanding of chemical processes at the nanoscale, with special interest on in situ catalysts and biosensing.

Graphical abstract: Expanding applications of SERS through versatile nanomaterials engineering

Article information

Article type
Tutorial Review
Submitted
21 Mac 2017
First published
22 Jun 2017

Chem. Soc. Rev., 2017,46, 3886-3903

Expanding applications of SERS through versatile nanomaterials engineering

M. F. Cardinal, E. Vander Ende, R. A. Hackler, M. O. McAnally, P. C. Stair, G. C. Schatz and R. P. Van Duyne, Chem. Soc. Rev., 2017, 46, 3886 DOI: 10.1039/C7CS00207F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements