Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In our work, we directly synthesized few layer MoS2 on a pyramid-Si substrate to fabricate a surface-enhanced Raman scattering (SERS) substrate via thermally decomposing the precursor of ammonium thiomolybdate ((NH4)2MoS4). Scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman spectra are employed to characterize the as-grown MoS2 layers. Adenosine and cytidine were selected as the probe molecules to investigate the SERS ability of the MoS2-pyramid-Si substrate, and have shown that the MoS2-pyramid-Si substrate can prominently suppress photobleaching and fluorescence of the probe molecule. Compared with the MoS2-flat-Si substrate (MoS2 layers synthesized on flat-Si substrate), the MoS2-pyramid-Si substrate has more significant SERS ability. The minimum detected concentration of both adenosine and cytidine on the MoS2-pyramid-Si substrate can reach 10−6 M. Importantly, the linear relationship between the Raman intensity and the concentration of adenosine or cytidine can apply to the bimolecular detection. This work may provide a new opportunity for the study of the chemistry mechanism (CM) and novel SERS substrate fabrication.

Graphical abstract: Large-area MoS2 thin layers directly synthesized on Pyramid-Si substrate for surface-enhanced Raman scattering

Page: ^ Top