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ABSTRACT

Transition metal ions (Fe, Mn, Cu, Zn) are essential for healthy brain function, but altered concentration, distribution, or 
chemical form of the metal ions has been implicated in numerous brain pathologies. Currently, it is not possible to image the 
cellular or sub-cellular distribution of metal ions in vivo and therefore, studying brain-metal homeostasis largely relies on ex 
vivo in situ elemental mapping. Sample preparation methods that accurately preserve the in vivo elemental distribution are 
essential if one wishes to translate the knowledge of elemental distributions measured ex vivo toward increased understanding 
of chemical and physiological pathways of brain disease. The choice of sample preparation is particularly important for metal 
ions that exist in a labile or mobile form, for which the in vivo distribution could be easily distorted by inappropriate sample 
preparation. One of the most widely studied brain structures, the hippocampus, contains a large pool of labile and mobile 
Zn. Herein, we describe how sucrose cryoprotection, the gold standard method of preparing tissues for immuno-
histochemistry or immuno-fluorescence, which is also often used as a sample preparation method for elemental mapping 
studies, drastically alters hippocampal Zn distribution. Based on the results of this study, in combination with a comparison 
against the strong body of published literature that has used either rapid plunge freezing of brain tissue, or sucrose cryo-
protection, we strongly urge investigators in the future to cease using sucrose cryoprotection as a method of sample 
preparation for elemental mapping, especially if Zn is an analyte of interest.
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INTRODUCTION

Zn is the second most abundant trace element in the brain, and essential for brain function. The average Zn 
concentration in a mouse or rat brain is on the order of several hundred µM.1-5 Interestingly, there is a subset of 
glutamatergic neurons found within layers III and V of the cortex, olfactory bulb, striatum, and hippocampus, 
which, although contributing to less than 5 % of total brain Zn, contain substantially elevated local Zn 
concentration (reported to approach 1 mM).3, 6 The chemical form of Zn contained within Zn enriched neurons is 
mostly labile (i.e., complexed to readily exchangeable ligands) and mobile (i.e., is released into the synaptic cleft 
during neuronal excitation).6-8 The labile and mobile nature of this Zn pool enables detection using classical 
histochemical stains for labile metal ions: e.g., Timm’s stain and Danscher methods;7, 9, 10 or the more recently 
developed Zn sensitive fluorescence sensors; TSQ, Newport Green. FuraZin, FluoZin, Znpyr, and ZnAF, as 
reviewed elsewhere.11, 12 Histochemical methods and fluorescence sensors have been immensely useful when 
applied to in vitro cell culture or organotypical tissue slice models.11, 13 In addition, perfusion of living animals 
with histochemical reagents enables the in vivo labile Zn pool to be visualised in brain tissue generated from 
animal models.7, 9-11 There are however, limitations to the above methods:11, 14-17 specificity issues may occur with 
cross reactivity of stains and sensors with other divalent metal ions (though designed to be minimal), sequestered 
or non-labile forms of Zn are not detected, the methods do not typically differentiate between multiple chemical 
forms of labile Zn, and disease states that alter cell membrane permeability may affect stain penetration though 
cells and tissues. As a hypothetical example, two samples with identical chemical form, amount, and distribution 
of Zn may produce two different patterns of staining if there are differences in the ability of the stain or sensor to 
permeate the tissue.

Spectroscopic methods capable of direct Zn detection do not suffer the limitations of histochemical stains or 
fluorescence probes described above, but in general direct spectroscopic detection does not offer the same level 
of chemical specificity. Elemental mapping techniques such as laser ablation inductively coupled plasma mass 
spectrometry (LA-ICP-MS), X-ray fluorescence microscopy (XFM), or proton-induced X-ray emission 
spectrometry (PIXE) have therefore, been widely adopted to image total Zn distribution within the brain. Multiple 
investigators have applied elemental mapping to characterise the baseline Zn distribution in the healthy rodent 
brain,18-30 during brain development and ageing,31-33 after injury such us stroke,28, 34-36 brain trauma,37-39 following 
potential Mn toxicity,40, 41 and in disease states, such as epilepsy,42-44 Alzheimer’s disease and dementia,45-52 and 
Parkinson’s disease.28, 53-55

The fact that a portion of brain Zn is coordinatively labile and also mobile demands that appropriate sample 
preparation protocols are employed to adequately preserve the in vivo Zn distribution. If inappropriate methods 
are used there is substantial risk to disturb and alter the endogenous Zn distribution, which is already known from 
extensive histochemical studies.7, 9-11 Further, past studies have shown that chemical fixation methods (e.g., 
formalin fixation) can leach or redistribute metal ions from brain tissue, and trace metal ion contamination in 
fixation media can artificially increase metal ion content.56-59 It is thus recommended that chemical fixation of 
tissues should be avoided for elemental mapping. Indeed, one of the major analytical advantages of XFM (or 
PIXE) and LA-ICP-MS is that they offer a direct reagent- and stain-free method for elemental detection. It is 
therefore perplexing that many studies still choose to prepare biological tissues using traditional chemical fixation 
and cryo-protection methods that were developed in an era before these more subtle properties of labile and 
mobile metals was widely appreciated. Specifically, sucrose cryo-protection (SCP) remains an accepted tissue 
preparation method for elemental mapping in pre-clinical studies of rodent brain tissue.

Tissue freezing is required to maintain optimum protein antigenicity during tissue storage, and SCP is arguably 
the gold-standard choice of sample preparation in the field of immuno-histochemistry (IHC) and immuno-
fluorescence (IF). SCP is widely used for IHC and IF, as it provides excellent preservation of cell structures and 
maintains protein antigenicity, while minimising formation of ice-crystals during tissue freezing. The wide-spread 
use of SCP in the IHC and IF fields, and the growth of multimodal imaging studies (i.e., combined elemental 
mapping with IF or IHC),60 may explain why many elemental mapping studies have adopted SCP for sample 
preparation without further scrutiny. Although the broader effects of chemical fixation on elemental distribution 
have been well-characterised,56-59 to our knowledge no study has specifically reported the effects of SCP on 
elemental distribution (specifically Zn distribution) within the hippocampus.
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The hippocampus has a highly organised structure, is critical to spatial learning and memory, and is enriched in 
labile Zn.6-8, 19, 61 Labile Zn is known to modulate hippocampal memory function, and disturbed hippocampal Zn 
is associated with brain pathology, including memory loss and cognitive decline.6, 8, 46, 61-64 The distribution of 
labile Zn within the hippocampus, as determined by classical histochemical methods, is well-characterised, and 
has a highly reproducible localisation to specific hippocampal sub-regions.7, 8, 11 We have performed a search of 
the literature, which revealed 30 studies reporting elemental maps of hippocampal Zn distribution; 23/30 use 
rapid plunge freezing (RPF) in either liquid nitrogen or liquid nitrogen cooled isopentane, 6/30 use SCP (i.e., 20 
%), and in 1/30 the sample preparation method was undefined.19-24, 29-33, 36, 39-44, 46, 47, 49-52, 54, 55, 65-68 In all studies 
where elemental mapping was performed on brain tissue prepared via RPF, highly reproducible hippocampal Zn 
distribution was reported (regardless of the animal model used), and the distribution strongly resembles the 
distribution of labile Zn shown in histochemical studies. In studies reporting elemental distributions from tissue 
prepared via SCP, substantial variation in the Zn distribution can be observed. In studies where SCP tissues show 
a drastically different distribution to that observed in tissue prepared via RPF, there is a visible trend in the pattern 
of redistribution. The characteristic features of hippocampal Zn distribution that are always observed in tissues 
prepared by RPF, which are not always observed in tissues prepared by SCP, are:

1. In tissue prepared via RPF the “mossy fibres” are the most Zn enriched hippocampal sub-
region, containing Zn levels at least double that of other sub-regions of the hippocampus, 
and the surrounding cortical and white matter structures (e.g., alveus, corpus callosum).

2. There is well defined contrast between the Zn content of the CA1 stratum radiatum (relatively 
higher Zn content) and the dentate gyrus molecular layer (relatively lower Zn content), in 
tissues prepared via RPF.

3. There is localised Zn enrichment within the pyramidal neuron layer and dentate gyrus 
granule neuron layer, in tissues prepared via RPF (this will only be observed if images are 
collected with sufficient spatial resolution to resolve these cell layers, which are only 2-3 
cells wide)

4. Tissues prepared via RPF do not display Zn enrichment or a “Zn halo” at the interface of 
the hippocampus and the white matter structures that encase the hippocampus.

There could be a number of experimental factors that result in the variation of Zn distribution that is observed in 
past studies that have used SCP, such as variation in animal strain, animal age, and tissue section thickness. The 
aim of our current study is not to discredit or disparage past work, however, it is our view that a detailed 
understanding of the nature of the hippocampal Zn redistribution that occurs in SCP tissues is critically needed 
to aid future experimental design and to avoid misinterpretations of experimental artifacts that may arise from the 
use of SCP in this context.

Herein, we present a side-by-side intra-animal comparison of hippocampal Zn distribution in brain hemispheres 
from mice and rats (in duplicate), which were prepared through either rapid plunge freezing in liquid nitrogen 
cooled iso-pentane (RPF, left hemisphere) or through sucrose cryo-protection (SCP, right hemisphere). We have 
previously shown that differences in Zn content and distribution are not observed between the left and right 
hemispheres in naïve brain tissue prepared via RPF.36 As such, our results support that a dramatic redistribution 
of Zn occurs during SCP. The pattern of Zn redistribution we observed can account for the variation in Zn 
distribution observed in the literature when comparing tissues prepared via RPF or SCP. Based on our results we 
strongly urge that the use of SCP be abandoned as an accepted sample preparation method in any future XFM or 
LA-ICP-MS studies, especially those that aim to investigate disease mechanisms through analysis of hippocampal 
Zn.
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METHODS

A rationale for our experimental design is provided in Supporting Information.

Animals

This study has compared Zn distribution in the hippocampus of two mice (senescence accelerated murine prone 
– strain 8, SAMP8) and two outbred rats (Sprague Dawley). The mice were 12 week old males, and the rats were 
6 week old males. All animals were housed in standard cages in a temperature controlled (21 °C) colony room 
on a 12/12 h light/dark cycle with standard rodent maintenance chow and water available ad libitum. The rat 
experiment was approved by the University of Saskatchewan’s Animal Research Ethics Board, and adhered to 
the Canadian Council on Animal Care guidelines for humane animal use. All experimental procedures for the 
mice experiment were conducted in accordance with Curtin University Animal Ethics Guidelines.

Tissue Collection and Sample preparation

Rat tissue was prepared at the University of Saskatchewan and mouse tissue was prepared at Curtin University. 
Sample preparation procedures were identical between the rat and mouse brains, and similar to previously 
described.69 Specifically, for this study: animals were anaesthetized with isoflurane, and humanely sacrificed 
through cervical dislocation and decapitation. The brain was immediately removed from the skull, and cut into 
two equal sagittal hemispheres. The left hemisphere was immediately plunge frozen in liquid-nitrogen cooled 
isopentane, i.e., rapid plunge freezing (RPF). The right hemisphere was fixed overnight in 4 % buffered formalin, 
before being transferred into graduated sucrose cryo-protection solutions. After sucrose cryo-protection, the brain 
hemisphere was flash frozen in liquid nitrogen. Tissue sections for XFM elemental mapping were cut with a cryo-
microtome at -18 ˚C at a thickness of 10-μm (coronal plane), and at a brain location of -3.3 to -2.7 mm relative 
to Bregma in rats, and -1.3 to -2.2 mm relative to Bregma in mice. Mouse tissue sections were melted onto silicon 
nitride substrate, 10x10 mm2 silicon frame, 200 µm thick, 5x5 mm2 silicon nitride membrane 1 µm thick, 
(Melbourne Centre for Nanofabrication, MCN), for imaging at the X-ray fluorescence microscopy beamline at 
the Australian Synchrotron. Rat tissue sections were cut onto 200 µm-thick metal free Thermanox plastic 
substrate (Thermo Scientific), for elemental mapping at beamline 10-2 at the Stanford Synchrotron Radiation 
Light Source. For both mouse and rat brains, serial tissue sections were cut and mounted on glass microscope 
slides for H&E histology (also cut at 10-μm-thick). Tissue sections for histology were cut at a location within 200 
μm of the sections analysed by XFM.

Synchrotron XFM Elemental Mapping of Hippocampal Zn Distribution

Elemental mapping of mouse hippocampal tissue was performed at the X-ray fluorescence microscopy beamline 
at the Australian Synchrotron, using a monochromatic incident beam of 15.8 keV, focused to a 2 µm (2-sigma) 
spot with a Kirkpatrick–Baez mirror pair. Experimental parameters were identical to those previously reported.65, 

67 Specifically, and as previously reported, data was collected with the sample orientated normal to the incident 
beam and with the Maia detector positioned in backscatter geometry, with the sample raster scanned through the 
beam using an effective dwell time of 0.1 ms and an effective step (pixel) size of 1 µm. Elemental foils 
(MicroMatter Technologies Inc., Canada), were scanned in the same geometry and used as references for 
elemental quantification, as previously reported. Elemental maps were reconstructed from the full X-ray emission 
spectra with GeoPIXE v6.6j. (CSIRO, Australia), which uses a linear transformation matrix for spectral 
deconvolution.70, 71 Quantitative data were extracted as tiff files of quantitative per-pixel elemental area density 
in ng cm-2, which were then imported into ImageJ v1.48, as described previously. All regions of interest, and the 
average elemental areal density, were calculated using ImageJ. Tissue samples were considered as “semi-thin” 
with respect to self-absorption, as demonstrated by other authors.73

Zn distribution in the rat hippocampus sections were collected using XFM at the Stanford Synchrotron Radiation 
Lightsource (SSRL) experimental station 10-2 (http://www-ssrl.slac.stanford.edu/beamlines/bl10-2/). The energy 
of the incident X-ray beam was 13.5 keV, and the beamline configuration was as previously reported.18 A pin 
hole aperture (50 µm) was positioned to yield an X-ray spot size of approximately 50 μm at the sample plane, 
which was mounted at 45° to the incident beam. The sample was raster scanned through the beam, with an 
exposure time of 100 ms per 30 μm step. X-ray emission spectra were recorded with a 4-element Vortex® silicon 
drift detector at 90° to the incident beam. Zn elemental maps were obtained as single channel data (not fitted 
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MCAs). Elemental maps were quantified using Zn reference foils, National Institute of Standards and Technology 
(NIST) reference standard (SRM #19176), as previously described.18 SSRL data was processed using the 
MicroAnalysis Toolkit (version 1.50).72

H&E Histology

To demonstrate the anatomical sub-regions within the hippocampus, routine haematoxylin and eosin (H&E) 
staining was performed, using a standard protocol. Microscopy images of the H&E stained tissue were acquired 
at 4x magnification using an Olympus Bx51 microscope with an Olympus dp70 camera, and cellSens standard 
software.

Data Analysis

Elemental maps of Zn distribution were prepared using Image J software, with the min and max colour intensity 
set to the same value for the left (RPF) and right (SCP) brain tissue. Due to the low number of replicates, 
quantitative statistical analysis was not undertaken; rather, qualitative comparison of Zn distribution is reported 
only.
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RESULTS & DISCUSSION

Zn is depleted from specific hippocampus sub-regions during sucrose cryo-protection in mice

Comparison of the hippocampal Zn distribution in mice, in tissue prepared via RPF or SCP is shown in Figure 1 
(mouse replicate 1) and Figure 2 (mouse replicate 2). The major anatomical features of the hippocampus have 
been outlined in the H&E histological image presented in Figure 1A. It is well established that the hippocampal 
mossy fibres are highly enriched in labile Zn (regions a1

 and a2),7, 10, 74 and this region can be seen to contain the 
highest concentration of Zn in both RPF and SCP tissues. Although the mossy fibres do appear enriched in Zn in 
the SCP tissue, it is clear that the Zn levels are reduced in mossy fibre region of SCP tissue relative to RPF tissue 
(i.e., comparison of Figure 1 panels B vs. C, D vs. F, H vs. I, and comparison of Figure 2 panels A vs. B, C vs. E, 
G vs. H).

The pyramidal cell layer (region e), and dentate gyrus granule cell layer (region b) appear relatively Zn enriched 
in RPF tissue, but this observation is in contrast with the apparently depleted Zn content, relative to surrounding 
neuropil, in SCP-treated tissue, e.g. comparison of Figure 1 panels B vs. C, D vs. F and E vs. G, and comparison 
of Figure 2 panels A vs. B, C vs. E, D, vs. F. Interestingly, traditional histochemical methods that reveal labile Zn 
do not routinely show a labile Zn pool within pyramidal or granule cell neurons,7, 10, 74 which could indicate that 
this intra-cellular Zn is predominantly protein bound and non-labile. The difference in Zn distribution within the 
pyramidal and granule cell layers between RPF and SCP tissues in our data however, suggests that a component 
of the intra-cellular Zn pool is at least mobile, if not labile. It is possible that histochemical methods do not detect 
labile intra-cellular Zn within neurons as the stains do not penetrate the cell membranes of intact, healthy cells in 
living animals. Looking at the published in vitro literature, where cell permeability and uptake mechanisms differ 
from the in vivo state, labile Zn is detected within neurons in cell culture.75 Taken together, our data and the 
published literature suggest there is a mobile pool of Zn within neuron cell bodies, which is not normally detected 
by histochemical stains, and this pool of Zn can be lost or redistributed during SCP.

The CA1 stratum radiatum (region d) is known to be enriched in labile Zn,7, 10, 74 albeit not to the same extent as 
the mossy fibres. Conversely, very little labile Zn is observed in the dentate gyrus molecular layer (region c) that 
is located ventral to the CA1 stratum radiatum and ventral to the hippocampal fissure.7, 10, 74 On the basis of the 
above, histochemical staining for labile Zn shows well-defined contrast in staining between the CA1 stratum 
radiatum and the adjacent dentate gyrus molecular layer.7, 10, 74 This staining pattern is reproduced in images from 
our current study, for tissues prepared via RPF i.e., increased Zn levels are observed in the CA1 stratum radiatum 
relative to the dentate gyrus molecular layer (Figure 1 panels B, E and Figure 2 panels A, D). The Zn appears to 
have been lost from the CA1 stratum radiatum in SCP tissue however, resulting in an apparent uniform 
distribution of Zn content across the CA1 stratum radiatum and dentate gyrus molecular layer (Figure 1 panels 
C, G, and Figure 2 panels B, F). The variation in Zn contrast across the CA1 stratum radiatum and dentate gyrus 
molecular layer between RPF and SCP tissues can also be seen in line plots of Zn areal density across these 
regions (Figure 3).

Zn is locally enriched in white matter that surrounds the hippocampus as a consequence of sucrose cryo-
protection, in mice

The results presented thus far indicate that SCP results in substantial mobilisation of Zn from hippocampal regions 
naturally enriched in labile Zn, which is not unexpected. The question that remains is whether the mobilised Zn 
is leached completely from the brain tissue, or if some of this labile pool instead binds to a different tissue region. 
Endogenous Zn content within white matter is naturally low,2, 3 but amino acid residues in white matter proteins 
(e.g., histidine residues in myelin basic protein, which are potent coordinators of Zn ions76) or the phospholipid 
head groups, could potentially compete for, and coordinate, Zn if exposed to a labile Zn pool that has been 
mobilized from its source location in the tissue. Under normal brain physiological conditions the white matter is 
not exposed to a mobile, labile Zn pool,2, 3, 6, 7 however, this could occur during SCP when Zn ions are mobilized 
from the hippocampus. As can be seen in Figure 1 panels C and I, and Figure 2 panels B and H, there is a 
substantial relative increase in Zn content at the periphery of the hippocampus (referred to as a Zn “halo”). The 
hippocampus is encased in white matter, bounded specifically the alveus, cingulum, and corpus callosum, and 
strong Zn enrichment is observed at the interface of the hippocampus and the white matter structures in SCP 
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treated tissue (Figure 3). The Zn “halo” surrounding the hippocampus is not observed in RPF tissue (Figure 1 B, 
H, Figure 2 A, G, and Figure 3).

The effect of sucrose cryo-protection on Zn distribution in the rat hippocampus is similar to that observed 
in mice

Due to limited availability of synchrotron time, analyses of mice and rat tissue were performed at different 
synchrotron facilities. Mouse tissues were analysed at the XFM beamline of the Australian Synchrotron (1 µm 
pixel resolution, with KB mirrors), while rat tissues were analysed at beamline 10-2 at SSRL (50 µm spatial 
resolution with a pin-hole aperture). Due to the more-coarse spatial resolution for the analysis of rat tissue, 
qualitative assessment of Zn distribution is limited to larger brain structures (i.e., individual cell layers could not 
be resolved). Nonetheless, in duplicate measurements, there is a clear redistribution of Zn as a consequence of 
SCP preparation (relative to RPF), and this mirrors the findings observed in mice. Specifically, there is a drastic 
reduction of Zn in the mossy fibre regions of SCP tissue in rats (regions a1 and a2), while the white matter 
structures that border the hippocampus (regions f1 and f2) display a substantive increase in Zn areal density (Figure 
4 and Figure 5). In addition, the contrast in Zn levels between the dentate gyrus molecular layer and the CA1 
stratum radiatum is not apparent in SCP-prepared rat tissue, consistent with the results demonstrated in mice 
(Figure 4 and Figure 5).
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CONCLUSIONS AND RECOMMENDATIONS

The results of this study, when considered alongside the data published in the literature, strongly support that 
sucrose cryo-protection results in substantial Zn redistribution in the hippocampus. It is impossible to determine 
if the redistribution will occur in all experimental cases, or if it will occur to the same magnitude in all cases, but 
it is clear that SCP is not well suited to preserve the in vivo hippocampal Zn distribution. The results of this study 
also indicate that due to the redistribution phenomena, samples prepared identically, may not experience identical 
magnitude of redistribution. For example, disease processes or brain injury often affect cell membrane 
permeability and result in varying levels of inflammation or metabolic alterations that can drastically affect 
protein synthesis (i.e., affect availability of Zn binding sites). Therefore, in a hypothetical scenario, the in vivo 
hippocampal Zn distribution could be identical between two experimental groups, but, unless protein expression 
and cell membrane permeability are also identical between the experimental groups, the use of SCP during sample 
preparation may induce differences in Zn distribution that is associated with the differential mobility of Zn across 
cell membranes and differential opportunities for Zn binding throughout the tissue. We strongly urge investigators 
in the field to move away from the use of sucrose cryo-protection in animal tissues for elemental mapping, 
especially if the tissue is known to contain a substantive proportion of labile or mobile metal ions.
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Figure 1: Hippocampal Zn distribution in mouse brain tissue (animal replicate 1)
prepared via rapid plunge freezing in liquid-nitrogen-cooled-isopentane (RPF), or
sucrose cryo-protection (SCP). (A) H&E histology showing the major anatomical sub-
regions (a – f). (B, C) Overview of Zn distribution in hippocampus in tissue prepared via
RPF (B) or SCP (C). (D – I) A zoomed in view of Zn distribution in specific anatomical
sub-regions of tissue prepared via RPF (D, E, H) or SCFP (F, G, I).
Hippocampal sub-regions are defined alongside H&E histology.
Scale bar in B, C = 500 µm, and D – H = 100 µm.
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Figure 2: Hippocampal Zn distribution in mouse brain tissue (animal replicate 2)
prepared via rapid plunge freezing in liquid-nitrogen-cooled-isopentane (RPF), or
sucrose cryo-protection (SCP). (A, B) Overview of Zn distribution in hippocampus of
tissues prepared via RPF (A) or SCP (B). (C-H) Zoomed in view of Zn distribution in
specific anatomical sub-regions of tissue prepared via RPF (C, D, G) or SCFP (E, F, H).
Hippocampal sub-regions are defined in Figure 1, alongside H&E histology.
Scale bar in B, C = 500 µm, and D-H = 100 µm.
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Figure 3: Line profiles of relative Zn concentration throughout mouse hippocampus
sub-regions (Zn concentration has been normalised to a max value of 1, and SCP trace
offset from the RPF trace, for clarity). The plots highlight the extent of Zn redistribution
that occurs in tissues prepared via SCP relative to RPF. (A,B) Zn distribution in tissue
prepared via SCP (A) and RPF (B), as also shown in Figure 1. White boxes show
regions of interest for line-profiles; Solid box = transect through alveus white matter (f1)
and mossy fibres (a1). Dashed box = transect through dentate gyrus molecular layer
(c), CA1 stratum radiatum (d), and CA1 pyramidal layer (e). (C, D) line transects of
relative Zn concentration through regions defined by the solid white boxes (C), and
dashed white boxes (D).
Hippocampal sub-regions are defined in Figure 1, alongside H&E histology.
Scale bar in A, B = 500 µm.
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Figure 4: Zn distribution in hippocampal sub-regiongs (a-f) within rat brain tissue from
two animal replicates, for tissue prepared via (A, C) rapid plunge freezing in liquid-
nitrogen-cooled-isopentane (RPF), or (B, D) sucrose cryo-protection (SCP).
Hippocampal sub-regions are defined in Figure 1, alongside H&E histology.
Scale bar in A – D = 500µm.
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Figure 5: Line profiles of relative Zn concentration throughout rat hippocampus sub-
regions (Zn concentration has been normalised to a max value of 1, and SCP trace
offset from the RPF trace, for clarity). The plots highlight the extent of Zn redistribution
that occurs in tissues prepared via SCP relative to RPF. (A, B) Zn distribution in tissue
prepared via SCP (A) and RPF (B), as also shown in Figure 1. White boxes show
regions of interest for line-profiles; Solid box = transect through alveus white matter (f1)
and mossy fibres (a1). Dashed box = transect through dentate gyrus molecular layer
(c), CA1 stratum radiatum (d), CA1 pyramidal layer (e), and CA1 corpus callous (f2) (C,
D) line transects of relative Zn concentration through regions defined by the solid white
boxes (C), and dashed white boxes (D).
Hippocampal sub-regions are defined in Figure 1, alongside H&E histology.
Scale bar in A, B = 500 µm.
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