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el PDGFR inhibitors targeting non-
small cell lung cancer using a multistep machine
learning assisted hybrid virtual screening approach

Sandhi Kranthi Reddy, *a S. V. G. Reddy a and Syed Hussain Basha b

Non-Small Cell Lung Cancer (NSCLC) is a formidable global health challenge, responsible for themajority of

cancer-related deaths worldwide. The Platelet-Derived Growth Factor Receptor (PDGFR) has emerged as

a promising therapeutic target in NSCLC, given its crucial involvement in cell growth, proliferation,

angiogenesis, and tumor progression. Among PDGFR inhibitors, avapritinib has garnered attention due to

its selective activity against mutant forms of PDGFR, particularly PDGFRA D842V and KIT exon 17 D816V,

linked to resistance against conventional tyrosine kinase inhibitors. In recent years, Machine Learning has

emerged as a powerful tool in pharmaceutical research, offering data-driven insights and accelerating

lead identification for drug discovery. In this research article, we focus on the application of Machine

Learning, alongside the RDKit toolkit, to identify potential anti-cancer drug candidates targeting PDGFR

in NSCLC. Our study demonstrates how smart algorithms efficiently narrow down large screening

collections to target-specific sets of just a few hundred small molecules, streamlining the hit discovery

process. Employing a Machine Learning-assisted virtual screening strategy, we successfully preselected

220 compounds with potential PDGFRA inhibitory activity from a vast library of 1.048 million

compounds, representing a mere 0.013% of the original library. To validate these candidates, we

employed traditional genetic algorithm-based virtual screening and docking methods. Remarkably, we

found that ZINC000002931631 exhibited comparable or even superior inhibitory potential against

PDGFRA compared to Avapritinib, which highlights the value of our Machine Learning approach.

Moreover, as part of our lead validation studies, we conducted molecular dynamic simulations, revealing

critical molecular–level interactions responsible for the conformational changes in PDGFRA necessary

for substrate binding. Our study exemplifies the potential of Machine Learning in the drug discovery

process, providing a more efficient and cost-effective means of identifying promising drug candidates

for NSCLC treatment. The success of this approach in preselecting compounds with potent PDGFRA

inhibitory potential highlights its significance in advancing personalized and targeted therapies for cancer

treatment.
Introduction

Non-Small Cell Lung Cancer (NSCLC) is a signicant global
health challenge and is the leading cause of cancer-related
mortality worldwide. 1 Accounting for approximately 85% of
all lung cancer cases, NSCLC encompasses a diverse group of
malignancies arising from the epithelial cells of the lungs. It is
characterized by aggressive tumor growth, early metastasis, and
limited treatment options, which necessitates urgent research
efforts to improve patient outcomes. 2 NSCLC is further classi-
ed into different subtypes, including adenocarcinoma, squa-
mous cell carcinoma, and large cell carcinoma, each with
distinct histological and molecular features. The identication
to be University), Visakhapatnam, A.P,

rabad, Telangana, India

the Royal Society of Chemistry
and understanding of these subtypes have revolutionized the
landscape of personalized medicine, as specic molecular
alterations can serve as therapeutic targets and inform treat-
ment decisions. 3 Smoking remains the primary risk factor for
NSCLC, with the risk strongly correlated with the duration and
intensity of smoking exposure. 4 However, in recent years, the
incidence of NSCLC among non-smokers, especially in women,
has been rising, suggesting that other factors, such as envi-
ronmental exposure and genetic predisposition, may also
contribute to its development. 5

Despite advances in early detection and treatment modali-
ties, the majority of NSCLC patients are diagnosed at an
advanced stage, when curative treatment options are limited. 6

Standard treatments include surgical resection, radiation
therapy, and chemotherapy, oen used in combination
depending on the stage and extent of the disease. 7 In the last
decade, targeted therapies and immunotherapies have emerged
RSC Adv., 2025, 15, 851–869 | 851
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as game-changing options for subsets of NSCLC patients,
offering improved survival rates and fewer side effects
compared to conventional chemotherapy. 8 However, chal-
lenges persist, such as resistance to therapies, disease relapse,
and the identication of novel targets for those without
actionable mutations. Consequently, ongoing research efforts
focus on identifying new therapeutic targets, understanding the
mechanisms of resistance, and developing innovative treatment
strategies to combat NSCLC effectively. 9

The Platelet-Derived Growth Factor Receptor (PDGFR) has
emerged as a promising target in NSCLC due to its critical role
in various cellular processes, including cell growth, prolifera-
tion, angiogenesis, and tumor progression. 10 PDGFR belongs to
the receptor tyrosine kinase family and is activated by binding
to its ligands, primarily platelet-derived growth factors (PDGFs).
11 Upon activation, PDGFR triggers intracellular signaling
cascades, such as the MAPK and PI3K pathways, which play
pivotal roles in cell survival, migration, and angiogenesis. 12

Increasing evidence suggests that PDGFR signaling is dys-
regulated in NSCLC and is associated with aggressive tumor
behavior, metastasis, and therapeutic resistance. Over-
expression and activation of PDGFR have been observed in
NSCLC patient samples and cell lines, making it an attractive
therapeutic target. 13 Preclinical studies investigating the inhi-
bition of PDGFR signaling in NSCLC have demonstrated
promising results. 14 Inhibitors targeting PDGFR have shown
antitumor activity and suppressed tumor growth in experi-
mental models of NSCLC. 15 Moreover, PDGFR inhibitors have
demonstrated the potential to enhance the efficacy of existing
therapies and overcome resistance to conventional treatments,
making them an appealing addition to current treatment regi-
mens. 16

Clinical trials evaluating PDGFR-targeted therapies in
NSCLC patients have shown encouraging outcomes, further
supporting the potential utility of PDGFR inhibition in the
clinical setting. 17 Among the PDGFR inhibitors, avapritinib has
garnered increasing attention for its potent and selective
activity against mutant forms of PDGFR, particularly PDGFRA
D842V and KIT exon 17 D816V, which are associated with
resistance to conventional tyrosine kinase inhibitors. 18

Avapritinib is an orally available small molecule kinase
inhibitor developed by Blueprint Medicines Corporation. It is
designed to specically target and inhibit the activity of PDGFR
and KIT receptors, which play critical roles in cell signaling and
cancer development. Avapritinib is specically intended for
adults with unresectable or metastatic gastrointestinal stromal
tumor (GIST). 19 Avapritinib's exceptional specicity for PDGFR
and KIT mutant forms makes it a promising candidate for tar-
geted therapy in NSCLC patients harboring these mutations. 20

Preclinical studies have demonstrated avapritinib's efficacy in
inhibiting tumor growth and reducing angiogenesis in NSCLC
models expressing PDGFRA D842V and KIT exon 17 D816V
mutations. 21 Moreover, avapritinib's ability to overcome resis-
tance to other tyrosine kinase inhibitors provides a unique
advantage in treating NSCLC patients with limited therapeutic
options, as a repurposed drug. 22 Clinical trials evaluating
avapritinib in NSCLC patients with PDGFR alterations have
852 | RSC Adv., 2025, 15, 851–869
shown promising results, with signicant antitumor activity
and improved overall survival rates. Notably, avapritinib's tar-
geted approach minimizes off-target effects on normal cells,
potentially reducing treatment-related toxicities compared to
traditional chemotherapies. 23 Despite these encouraging nd-
ings, challenges remain in understanding the optimal patient
selection, dening the appropriate combination therapies, and
addressing potential resistance mechanisms.

In recent years, the convergence of computational
approaches and molecular biology has led to groundbreaking
advancements in drug discovery, particularly in the identica-
tion of potential anti-cancer agents. Machine Learning, a subset
of articial intelligence, has emerged as a powerful tool in the
pharmaceutical industry for lead identication, offering accel-
erated and data-driven insights into novel drug candidates.
Coupled with RDKit, a widely-used open-source chem-
informatics toolkit, 24 these methodologies hold immense
promise in the quest for more effective and targeted therapies
for complex diseases like non-small cell lung cancer (NSCLC)
through PDGFR targeting.

Machine Learning offers the advantage of processing large-
scale datasets, uncovering intricate patterns, and predicting
molecular properties with remarkable accuracy. In the context
of lead identication, Machine Learning models are trained
using diverse chemical libraries and biological data to discern
molecular features associated with desired therapeutic activi-
ties. 25 These models can then be applied to screen vast chem-
ical databases to prioritize promising drug candidates,
accelerating the drug discovery process and reducing the asso-
ciated costs and time. RDKit, on the other hand, provides
a versatile and efficient toolkit for cheminformatics, allowing
researchers to manipulate chemical structures, calculate
molecular descriptors, and perform virtual screening and
structure–activity relationship (SAR) analysis. Its seamless
integration with Machine Learning workows facilitates the
rapid exploration of chemical space and the generation of
predictive models that lead to rational drug design.

In this research paper, we focus on the application of
Machine Learning and RDKit in lead identication for anti-
cancer drug discovery, with a specic emphasis on PDGFR tar-
geting in NSCLC, as a preliminary step towards repurposing
existing PDGFR inhibitor designed for GIST as a NSCLC
inhibitor along with nding similar or better molecules.

Methods
Molecular ngerprints

Molecular ngerprints are numerical representations of mole-
cules that encode molecular fragments or features as binary
digits (0 or 1), indicating the presence or absence of a specic
feature.

Molecular ngerprints and their purpose. Molecular nger-
prints are a type of molecular descriptors that encode molecular
features as binary digits. Features present in a molecule are
represented by 1, while absent features are represented by 0.
Molecular ngerprints provide a numerical representation of
molecules, which enables various computational analyses and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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modeling techniques. They are used for structure similarity
searches, virtual screening of compounds, and developing
predictive models like quantitative structure–activity relation-
ship (QSAR) or quantitative structure–property relationship
(QSPR) models. 26

Molecular ngerprints were generated using the open-source
cheminformatics library, RDKit. The required libraries for the
research are imported, including pandas, numpy, matplotlib,
and RDKit. Pandas is used for reading CSV les, numpy for
converting RDKit objects to number arrays, matplotlib for
plotting, and RDKit for molecular ngerprint generation.

Data collection. A dataset containing molecular structures
(SMILES strings) values is imported using pandas. The SMILES
column from the dataset is used to generate molecular graphs
using the RDKit library. The function “add_molecule_co-
lumn_to_frame” from the “PandasTools” module is employed
to add a new column with the molecular graphs.

Visualization of molecular structures. The molecular struc-
tures are displayed using the RDKit library's “Draw.MolsTo-
Image” function. Molecular Fingerprint Generation: The
research focuses on generating two molecular ngerprints
available in RDKit: MACCS and 2D pharma ngerprints. For
each ngerprint type, the specic RDKit functions are used to
calculate the ngerprints for a given molecule.

Protein–ligand structures visualization

The visualization soware used for this study included Schro-
dinger's Maestro visualization program v9.6 27 and Biovia
Discovery Studio v16.1. 28 These programs were employed to
visualize the receptors and ligand structures, analyze the
hydrogen bonding network, calculate bond lengths, and
generate images.

Protein and ligands retrieval

The Avapritinib compound (DrugBank accession number
DB15233) was obtained from the DrugBank database, 29 drug like
molecules database of about 10 lakhs and 48 thousand
compounds were retrieved from ZINC database 30 and the crystal
structure of Platelet-derived growth factor receptor a (PDGFRA)
[PDB: 5K5X] 31 was retrieved from the Protein Data Bank (PDB). 32

Clustering

Clustering is a data analysis method that groups similar data
points together, useful for pattern recognition and simplifying
complex datasets. It's unsupervised and applied in various elds,
but selecting the right algorithm and number of clusters can be
challenging. Evaluation metrics help assess cluster quality, and
visualization techniques aid in understanding the results.

The K-Means clustering algorithm was chosen for its effi-
ciency and ability to handle high-dimensional, unlabelled data.
K-Means assigns data points or compounds to clusters where
points or compounds within each cluster are more similar to
each other than to those in other clusters. K-Means offers faster
computation through its iterative process when compared to
other clustering algorithms Hierarchical Clustering and
DBSCAN, making it ideal for high-throughput virtual screening.
© 2025 The Author(s). Published by the Royal Society of Chemistry
We can integrate the K-Means clustering machine learning
algorithm into the elbow approach. A well-liked unsupervised
machine learning approach called K-Means clustering is used to
divide a dataset into a number of separate, non-overlapping
clusters. To organize data points into K clusters, where K is
a predetermined number, is the basic goal of K-Means. The goal
is to reduce the sum of squared distances between data points
and their cluster's mean. Each data point belongs to the cluster
with the closest mean (center). The elbow method is utilized in
K-Means clustering. K-Means doesn't need labeled data, in
contrast to supervised learning. K cluster centroids are itera-
tively adjusted until they cease moving aer being initialized
randomly. For a better understanding, let's go over the steps
involved in K-means clustering:

� Choose (K) how many clusters there should be in the
dataset.

� Decide on K centroids at random from the dataset.
� To create K clusters, we will now utilize the Euclidean

distance or Manhattan distance as the metric to determine the
distance between each point and the nearest cluster centroid.

� Now identify the new centroid of the resulting clusters.
� Repeat step 4 aer once more reassigning the entire data

point based on this new centroid. The process will be repeated
until the centroid's position stays the same, or there is no longer
any convergence, aer a predetermined number of iterations.

The key to this approach is determining the ideal number of
clusters. The Elbow Method is a frequently employed technique
for determining the ideal K value. In the Elbow method, we are
actually varying the number of clusters (K) from 1–20 depending
upon the dataset. For each value of K, we are calculating WCSS
(Within-Cluster Sum of Square). WCSS is the sum of the
squared distance between each point and the centroid in
a cluster. When we plot the WCSS with the K value, the plot
looks like an Elbow. As the number of clusters increases, the
WCSS value will start to decrease. WCSS value is largest when K
= 1. When we analyze the graph, we can see that the graph will
rapidly change at a point and thus creating an elbow shape.
From this point, the graph moves almost parallel to the X-axis.
The K value corresponding to this point is the optimal value of K
or an optimal number of clusters. When referring to the quality
of clusters in unsupervised clustering methods like K-Means,
the term “silhouette” in data analysis and clustering typically
refers to the silhouette coefficient or silhouette score. When
compared to the closest neighboring cluster, the silhouette
score indicates how similar each data point in a cluster is to its
neighbors in that cluster. From −1 to 1, better results are
indicated by higher values.

Aer generating molecular ngerprints, the application of
the K-Means clustering algorithm is followed by validation to
determine the primary cluster, with a focus on identifying lead
compounds exhibiting the highest binding energy.
Deep learning

Deep learning is a subset of machine learning that uses neural
networks with many layers to learn and make predictions from
data. It's known for its ability to automatically extract features
RSC Adv., 2025, 15, 851–869 | 853
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from raw data, making it suitable for tasks like image and
speech recognition, natural language processing, and autono-
mous driving. Deep Convolutional Neural Networks (DCNNs)
are a type of articial neural network recognized for their
autonomous capability to extract features from data. They are
particularly valuable in tasks involving images, such as image
recognition and computer vision. In the domain of drug
discovery, DCNNs are indispensable for the analysis of molec-
ular structures, virtual screening, and the prediction of prop-
erties. They facilitate the identication of potential drug
candidates and the exploration of their interactions with bio-
logical targets, revolutionizing the drug discovery process
through data-driven approaches.

A Convolutional Neural Network (CNN) is structured with
several layers, including the input layer, Convolutional layer,
Pooling layer, and fully connected layers. 34

Input layer. This layer receives the raw data, such as an
image or sequence, and passes it forward for processing.

Convolutional layers. These layers apply lters (also known
as kernels) to the input data to detect patterns and features.
Convolutional layers are crucial for identifying shapes, edges,
and more complex structures in images or sequences. 34

Pooling layers. Aer convolutional layers, pooling layers
down sample the feature maps created by convolution, reducing
the spatial dimensions. This helps reduce computational
complexity and retain essential features.

Fully connected layers. These layers connect each neuron to
all neurons in the previous layer. Fully connected layers are
oen used in the nal stages of the network for tasks like
classication or regression.
These layers work together in a hierarchical manner, with
deeper layers learning increasingly abstract and complex
features. DCNNs are particularly well-suited for tasks like image
recognition and computer vision due to their ability to auto-
matically learn and represent hierarchical features within data.
KDEEP is a protein–ligand affinity predictor based on DCNNs
(Deep Convolutional Neural Networks) is used for the virtual
screening process. 33 The results for the core test set for the
standard PDBbind (v. 2016) 34 are state-of-the-art, with a Pear-
son's correlation coefficient of 0.82 and an RMSE in pK units
between experimental and projected affinity of 1.27. KDEEP is
made available through https://PlayMolecule.org so users can
854 | RSC Adv., 2025, 15, 851–869
quickly test their own protein–ligand complexes. Each
prediction only takes a brief amount of time. 35 KDEEP is
already in use as a desirable scoring function for
contemporary computational chemistry pipelines because of
its speed, performance, and simplicity. Deep Convolution
Neural Networks utilized for the protein–ligand binding
affinity predictions as part of the KDEEP program voxelized
given compound structure into 8 different pharmacophoric-
like features (hydrophobic, aromatic, hydrogen-bond donor
and acceptor, positive and negative ionizable, metallic and total
excluded volume). Then, it is used as input for a DCNN model,
which is pre-trained using the PDBbind v.2016 database, to
predict the binding poses and binding energies.
Molecular docking

For the semi-exible docking studies between PDGFRA, Avap-
ritinib and ZINC000002931631 compound, Autodock 4.0 36 was
the preliminary docking program employed. The ligands and
protein receptors were prepared in pdbqt le format, and the
size of the grid box was determined using Auto-Dock Tools
version 1.5.6. The grid box, measuring 126 Å (x, y, and z), was set
to score energy and was centered at X 0.024 Y 0.771 and Z
−1.118 with 0.375 angstroms grid points spacing. 37,38
Molecular dynamic simulations

For molecular dynamic simulation studies, Schrodinger's Des-
mond module v3.6 39 was employed using the default protocol
as explained elsewhere in detail. 40–45 The OPLS 2005 force
eld 46 was used along with simulation TIP3P water models. 47
The simulation boxes were created with periodic boundary
conditions, buffered at 10 Å distances, and the volumes were
calculated to be 400 000 cubic Å s for PDGFRA in its apo state,
complexed with Avapritinib and in complex with
ZINC000002931631 at its binding site. During the equilibration
process, van der Waals and short-range electrostatic interac-
tions were cut off at 9 Å, while long-range electrostatic interac-
tions were computed using the Particle Mesh Ewald method. 48

A RESPA integrator 49 with a time step of 2 fs was used, and long-
range electrostatics were computed every 6 fs. The equilibration
was carried out using the Desmond program in the NPT
ensemble 50 at a temperature of 300 K and 1 bar pressure using
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the Nose–Hoover chain relaxation thermostat method along
with the Martyna–Tobias–Klein relaxation Barostat method 51

with isotropic coupling style at 1 ps & 2 ps timescales, respec-
tively. Throughout the simulated timescale, all the simulations
were conducted under the same temperature, pressure, and
volume conditions. 52,53 As part of the simulation quality anal-
ysis, it was observed that the average total energy of the simu-
lated system remained constant at −100500 kcal mol−1 in all
cases of simulations.
Similarity search

Similarity metrics .54 Similarity metrics, also known as
similarity measures or distance metrics, are mathematical tools
used to quantify the similarity or dissimilarity between two
objects, datasets, or entities. These metrics play a fundamental
role in various elds, including data analysis, machine learning,
information retrieval, recommendation systems, and more. The
choice of similarity metric depends on the nature of the data
and the specic problem you're trying to solve. Here are some
commonly used similarity metrics.

Euclidean distance .55 Euclidean distance measures the
straight-line distance between two points in Euclidean space. It
is oen used for continuous data and is suitable for cases where
the data features have a clear geometric interpretation. The
formula for Euclidean distance between two points A and B in n-
dimensional space is:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2 þ.þ ðz1 � z2Þ2

q

Cosine similarity .56 Cosine similarity measures the cosine of
the angle between two vectors in multidimensional space. It is
oen used for text data or other high-dimensional data where
magnitude matters less than the direction. Cosine similarity
ranges from −1 (perfect dissimilarity) to 1 (perfect similarity),
with 0 indicating orthogonality. The formula for cosine simi-
larity between vectors A and B is:

Cosine similarity ¼
P ðAi:BiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðAiÞ2

q
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðBiÞ2
q

Jaccard similarity or tanimoto coefficient .57 Jaccard simi-
larity measures the similarity between two sets by comparing
the intersection of the sets to their union. It is commonly used
for binary data or data with binary attributes, such as text
documents represented as sets of words. The formula for Jac-
card similarity is:

Jaccard Similarity ¼ jAX ​ Bj
jAW ​ Bj

The Tanimoto coefficient, also known as the Jaccard simi-
larity coefficient, is considered efficient for certain types of
similarity comparisons, particularly in cases where binary data
or binary feature vectors are involved. Here's why the Tanimoto
coefficient is considered efficient: Simplicity: The Tanimoto
© 2025 The Author(s). Published by the Royal Society of Chemistry
coefficient is straightforward to compute. It measures the
similarity between two sets by comparing the size of their
intersection to the size of their union. This simplicity makes it
computationally efficient, especially when dealing with large
datasets.

Binary data. The Tanimoto coefficient is particularly well-
suited for binary data, where each data point is represented as
a binary feature vector. This is common in various applications,
such as text document analysis (where words are binary
features), molecular ngerprints in cheminformatics (presence/
absence of substructures), and collaborative ltering in
recommendation systems (user–item interactions). Sparsity: In
scenarios with binary data, feature vectors are oen sparse,
meaning that most feature values are zero. The Tanimoto
coefficient efficiently handles sparse data because it only
considers the presence (1) or absence (0) of features. Set-Based
Comparison: The Tanimoto coefficient is inherently a set-based
similarity measure. It treats data points as sets of features,
making it suitable for applications where set-like relationships
are important, such as nding similar items or documents.
Studies say that tanimoto coefficient is the most efficient
similarity metric to nd the similarity. For every smile in the
dataset and for query smiles Morgan ngerprint data is gener-
ated as a binary numerical vector. From numerical vector
number of On bits and On bit indexes are identied i.e., the bit
index where binary vector contains 1 for both smile in dataset
and for query smile, union and intersection of two bits are
calculated to calculate tanimoto coefficient as show in Fig. 1.

Structural ngerprints .58 These ngerprints encode the
structural information of a molecule. They are typically binary
or integer vectors that represent the presence or absence of
specic structural features or substructures within a molecule.
Common structural ngerprints include: ECFP (Extended
Connectivity Fingerprints): these ngerprints encode molecular
substructures by considering atom connectivity within a speci-
ed radius from each atom in the molecule. MACCS Keys: the
MACCS (Molecular ACCess System) keys 59 are a set of 166
predened structural keys that represent various chemical
features, such as functional groups and substructures.
Descriptor-based Fingerprints: these ngerprints encode the
molecular properties of a compound as numerical descriptors.
These descriptors can be based on various molecular proper-
ties, such as quantum chemical calculations, physical–chemical
properties, or pharmacophore features. Common descriptor-
based ngerprints include: physicochemical descriptors: these
include properties like molecular weight, polar surface area, log
P (partition coefficient), and many others that describe the
physical and chemical characteristics of a molecule. Quantum
chemical descriptors: these are derived from quantum
mechanical calculations and provide detailed electronic and
structural information about a molecule. Pharmacophore
Fingerprints: these describe the molecular features necessary
for a compound to interact with a biological target, such as
protein–ligand interaction patterns. Molecular ngerprints are
used in a wide range of applications, including drug discovery
(virtual screening and QSAR modeling), similarity searching,
clustering, and cheminformatics. In hybrid screening we have
RSC Adv., 2025, 15, 851–869 | 855
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Fig. 1 Schematic representation of Tanimoto coefficient calculation for SMILES in a dataset with respect to a query SMILES.
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usedMorgan ngerprint and 2D pharmacophore ngerprint are
used because they are useful for similarity searching and
molecular clustering due to their ability to capture local struc-
tural information.

Morgan ngerprints, 60 oen referred to as Morgan circular
ngerprints or simply Morgan ngerprints, are a type of
molecular ngerprint used in cheminformatics and computa-
tional chemistry. These ngerprints are a variation of the
Extended Connectivity Fingerprints (ECFP) and are designed to
represent the structural features and connectivity patterns of
molecules in a binary format as shown in Fig. 2.
Fig. 2 Schematic representation of Morgan Fingerprint data generation

856 | RSC Adv., 2025, 15, 851–869
Pharmacophore ngerprints 61–63 are a type of molecular
ngerprint used in cheminformatics and drug discovery. They
are designed to capture the essential features of a molecule that
are critical for its interaction with a biological target, such as
a protein or enzyme as shown in Fig. 3. Pharmacophore
ngerprints are widely used for ligand-based virtual screening,
similarity searching, and pharmacophore modeling.

Here are some key points about pharmacophore
ngerprints.

Pharmacophore features. Pharmacophore ngerprints
encode specic chemical features or groups within a molecule
.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Schematic representation of Pharmacophore fingerprint data generation.
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that play a crucial role in its biological activity. These features
can include hydrogen bond donors, hydrogen bond acceptors,
aromatic rings, positive/negative ionizable groups, and hydro-
phobic regions.

Feature encoding. Each pharmacophoric feature is encoded
in the ngerprint, oen as binary values (1 for presence, 0 for
absence) or with more detailed encoding schemes that include
information about the feature type and spatial arrangement.

Spatial information. Pharmacophore ngerprints can
capture not only the presence of features but also their spatial
relationships. For example, they can encode the relative
distances or angles between features within the molecule.
Hybrid screening method- integrating
clustering and deep learning for virtual
screening

FDA has approved avapritinib for gastrointestinal stromal
tumors (GIST), but for lung cancer there is no PDGFR inhibitor.
Now the target is to nd the new drug for non-small cell lung
cancer which shows better results than PDGFR inhibitor
Fig. 4 Schematic representation of hybrid screening employing K-Mean

© 2025 The Author(s). Published by the Royal Society of Chemistry
Avapritinib by applying machine learning/deep learning tech-
niques in lead identication and lead optimization. In lead
identication, a lead compound needs to be identied for target
(PDGFR). For that a dataset of drug-like molecules was down-
loaded from https://zinc12.docking.org/subsets/clean-drug-like
which contains 10 lakhs, 48 thousand compounds/molecules.
To identify the top lead compound a Hybrid screening is
proposed as shown in Fig. 4 and 5. The process of Hybrid
screening is as follows:

� Molecular ngerprint is calculated for every molecule or
smile in dataset two molecular ngerprint data i.e., Morgan
nger print and 2Dpharmacorhore ngerprint is generated.

� Similarity metrics are used to nd similarity between query
molecule and list of compounds.

� K-Means Clustering algorithm is applied to ltered out
required compounds.

� Convolution Neural Network(K-Deep) is applied on ltered
lead compounds to predict Binding Energy.

� Finally Molecular dynamics simulation is performed to
propose lead compounds.

The main advantage of Hybrid screening is that the time
required for screening the compounds is drastically reduced
s clustering and DCNN.

RSC Adv., 2025, 15, 851–869 | 857
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Fig. 5 Schematic representation of hybrid screening protocol followed for the current study.
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because traditional virtual screening takes 100 times more than
hybrid method to screen compounds and it will become stan-
dard method to identify the novel inhibitor for any disease.

Molecular ngerprint data refers to a representation of
a molecule's structure and properties in a format that can be
used for various computational and analytical purposes. These
ngerprints are essential in the elds of chemistry, bio-
informatics, and drug discovery, among others. There are two
primary types of molecular ngerprints: the Morgan ngerprint
and the Pharmacophore ngerprint.
Results & discussion

The following Fig. 6a and b provides a comprehensive overview
of Tanimoto coefficient statistics, which quantify the similarity
between compounds, for both the Morgan ngerprint and the
Pharmacophore ngerprint. This analysis offers valuable
insights into the degree of structural similarity or dissimilarity
among compounds represented by these two distinct nger-
printing methods, contributing to a deeper understanding of
their relationships.

Now K-Means Clustering algorithm is applied for Tanimoto
values of morgan and pharmacophore to lter out top most
smiles. The elbow method is applied on morgan nger Tani-
moto values, from which can we conclude the number of clus-
ters. The following Fig. 6c represents the elbow method: x axis
represents number of clusters and y axis represents WCSS.
From the graph we can observe that there is a constant ow
from cluster 18 to 22, hence we can consider the number of
clusters as 20. Now K-Means algorithms are applied on morgan
858 | RSC Adv., 2025, 15, 851–869
Tanimoto values for K value as 20. Aer applying K-Means
clustering on Morgan Fingerprint Tanimoto values the
following clusters (shown in Fig. 6d) are generated. The
following Fig. 7a shows the silhouette score of above clustering
as 0.57 which is considered as efficient clustering. The cluster
number, count, minimum and maximum values are shown in
Table 1 as well as in Fig. 7b. By observing the following table
and graph the sixth cluster i.e., cluster no:5 has the highest
range of Tanimoto values containing values between 0.29 to
0.38 with entries 2197 which are useful for further screening
process.

Similarly K-Means applied for pharmacophore ngerprint
data before that number of clusters need to be identied based
on the Elbow method. The following Fig. 7c represents the
elbow method: x axis represents number of clusters and y axis
represents WCSS. From the graph it is observed that there is
a constant ow from the number of clusters from 15 to 19,
hence we can consider the number of clusters as 17. Now K-
Means algorithms are applied on pharmacophore Tanimoto
values for K value as 17. The following graph shows the clus-
tering of pharmacophore Tanimoto values (Fig. 7d).

When referring to the quality of clusters in unsupervised
clustering methods like K-Means, the term “silhouette” in data
analysis and clustering typically refers to the silhouette coeffi-
cient or silhouette score. When compared to the closest
neighboring cluster, the silhouette score indicates how similar
each data point in a cluster is to its neighbors in that cluster.
From −1 to 1, better results are indicated by higher values. The
following Fig. 7e shows the silhouette score of above clustering
as 0.57 which is considered as efficient clustering.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) Statistical overview of Tanimoto coefficients using Morgan Fingerprints. This figure displays key statistical metrics, including mean,
median, standard deviation, min–max range, and percentiles, offering insights into dataset similarity based on Morgan Fingerprints. (b) Statistical
overview of Tanimoto coefficients using Pharmacophore Fingerprints. This figure displays key statistical metrics, including mean, median,
standard deviation, min–max range, and percentiles, offering insights into dataset similarity based on Pharmacophore Fingerprints. (c) Elbow
Method for Morgan Fingerprints Clustering. This graph demonstrates the ElbowMethod, a tool for determining the optimal number of clusters in
Morgan Fingerprints analysis. (d) K-Means Clustering of Morgan Fingerprints Based on Tanimoto Values. A visual representation of dataset
clustering achieved through K-Means clustering using Morgan Fingerprints and their Tanimoto values.
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K-Means clustering algorithm generated twenty clusters for
given data, the cluster number, count, minimum andmaximum
values are shown in the Table 2 as well as in graph Fig. 7f. By
observing the following table and graph the sixth cluster i.e.,
cluster no: 6 has the highest range of Tanimoto values con-
taining values between 0.27 to 0.40 with entries 1958 which are
useful for further screening process.

With the help of k-means clustering algorithms two clusters
are identied, one from Morgan Fingerprint i.e. cluster number
06 that contains 2197 smiles and other one is from pharmaco-
phore ngerprint i.e., cluster number 07 that contains 1958
smiles as shown in Table 3.

The graph, presented in Fig. 8a, provides a comparative
analysis of Tanimoto similarity values between two distinct
clusters: Morgan and Pharmacophore. The horizontal axis
represents the index, sequentially identifying data points, while
the vertical axis quanties the Tanimoto similarity values. This
visualization offers insights into the degree of similarity or
dissimilarity between compounds within these clusters, aiding
in the assessment of their structural relationships.
© 2025 The Author(s). Published by the Royal Society of Chemistry
In this comparative analysis, we have examined two distinct
clusters of chemical compounds. The rst cluster comprises
2197 entries, each characterized by their SMILES representa-
tions and associated Tanimoto similarity values. The second
cluster consists of 1958 entries, exclusively associated with the
Pharmacophore ngerprint category. Importantly, a subset of
common SMILES entries was identied from both the Morgan
and Pharmacophore ngerprint datasets which is shown in
Table 4 and Fig. 8b. The motivation behind this selection was to
pinpoint the most relevant compounds, particularly those with
potential for high binding affinity or biological activity. By
focusing on these shared SMILES entries, this analysis seeks to
highlight and prioritize compounds of signicant interest for
further exploration and investigation, potentially accelerating
the process of identifying promising candidates in chemical
and drug discovery research.

Traditional virtual screening methods oen require a signif-
icant amount of time to si through large datasets, typically
reducing compounds from hundreds of thousands to just
thousands. However, the integration of similarity metrics and
RSC Adv., 2025, 15, 851–869 | 859
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Fig. 7 (a) A graphical representation illustrating the Silhouette Score, a vital metric for validating K-Means clustering. (b) Bar Chart Depicting the
Range of Minimum and Maximum Values Across All 20 Clusters. (c) Elbow Method for Pharmacophore fingerprint Clustering. This graph
demonstrates the Elbow Method, a tool for determining the optimal number of clusters in Pharmacophore Fingerprint analysis. (d) K-Means
Clustering of Pharmacophore fingerprints Based on Tanimoto Values. A visual representation of dataset clustering achieved through K-Means
clustering using Pharmacophore fingerprint and their Tanimoto values. (e) A graphical representation illustrating the Silhouette Score, a vital
metric for validating K-Means clustering. (f) Bar Chart Depicting the Range of Minimum and Maximum Values across all 17 Clusters.
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machine learning has revolutionized this process, signicantly
reducing the time required to lter compounds to a minimum.
Virtual screening

Following the ngerprint-based screening described above,
a total of 220 commonly identied compounds were subjected
to virtual screening using a computational pipeline. The results
of this virtual screening revealed that all 220 compounds
exhibited successful docking with the PDGFR protein, display-
ing a binding energy range spanning from −10.7 to −7.4 Kcal
mol−1. In comparison, the control compound, avapritinib,
exhibited a binding energy of −9.7 Kcal mol−1.

The comprehensive list of compounds resulting from the
virtual screening process can be found in the supplementary
860 | RSC Adv., 2025, 15, 851–869
material. Among the 220 compounds evaluated, we have iden-
tied the top 30 compounds, which, along with the control
compound avapritinib, displayed a binding affinity of −9.8 Kcal
mol−1 or higher during molecular docking studies. These top-
ranking compounds have been selected for further in-depth
evaluation.
Molecular docking

Among the Top 30 compounds evaluated, we have found that all
30 compounds exhibited successful docking with the PDGFR
protein, displaying a binding energy range spanning from
−10.69 to −7.65 Kcal mol−1 and rest of the compounds showed
−8.98 Kcal mol−1 of less in binding affinity towards PDGFR.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Cluster statistics – comprehensive data including cluster
number, count of elements, minimum value, and maximum value,
across a total of 20 distinct clusters

Cluster Count Min Max

0 84 622 0.12 0.13
1 73 855 0.18 0.19
2 26 780 0.22 0.23
3 39 151 0.08 0.1
4 73 587 0.15 0.16
5 2197 0.29 0.38
6 34 411 0.21 0.22
7 59 637 0.1 0.11
8 83 599 0.13 0.14
9 16 624 0.23 0.25
10 87 920 0.17 0.18
11 21 203 0.06 0.08
12 91 496 0.14 0.14
13 59 584 0.19 0.2
14 76 334 0.11 0.12
15 7938 0.26 0.28
16 85 612 0.14 0.15
17 76 067 0.16 0.17
18 42 065 0.2 0.21
19 5889 0 0.06

Table 2 Cluster statistics – comprehensive data including cluster
number, count of elements, minimum value, and maximum value,
across a total of 17 distinct clusters

Cluster Count Min Max

0 93 397 0.03 0.04
1 73 569 0.1 0.11
2 43 931 0.14 0.16
3 89 486 0.07 0.09
4 18 249 0.2 0.23
5 86 610 0 0.01
6 1958 0.27 0.4
7 93 278 0.05 0.06
8 53 014 0.13 0.14
9 35 441 0.16 0.18
10 82 135 0.09 0.1
11 92 748 0.01 0.03
12 9554 0.23 0.27
13 93 130 0.04 0.05
14 92 014 0.06 0.07
15 26 909 0.18 0.2
16 63 148 0.11 0.13
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According to the docking results, Avapritnib was found to be
docked at the binding site with a binding energy of
−10.69 kcal mol−1 and a predicted IC50 value of 14.49 nM
Table 3 Fingerprint overview – fingerprint names, ranges, cluster assign

S.No Name of the nger print Range

1 Morgan ngerprint 0.29 to
2 Pharmacophore ngerprint 0.27 to

© 2025 The Author(s). Published by the Royal Society of Chemistry
(nanomolar). Whereas, ZINC000002931631 successfully bound
to the PDGFRA binding site, occupying the available space with
a binding energy of −10.58 kcal mol−1 and a predicted IC50
value of 17.60 nM (nanomolar), suggesting that our proposed
compound ZINC000002931631 is very close to the inhibitory
potential of Avapritinib.

In Fig. 9, it is evident that Avapritinib formed direct
hydrogen bonds with LEU615; TYR676; SER917 and ASP973;
while engaging in pi-stacking interactions with residues
GLU675; ASP973; LEU615; LEU661; ARG585; TRP586, TYR676
and LYS623. Furthermore, van der Waals interactions involving
important residues SER616 and ASP973 were observed.
Whereas, ZINC000002931631 formed direct hydrogen bonds
with ASP973; while engaging in pi-stacking interactions with
residues GLY652; PRO653; SER972; LEU615; LEU660; LEU661;
ARG585 and TRP586. Furthermore, van der Waals interactions
involving important residues SER616; ARG585; THR649;
MET648; ASN659; PHE969 and ASP973 were observed.
Molecular dynamic simulations

To investigate the dynamic behavior of PDGFRA in its apo form,
PDGFRA in complex with Avapritinib, and PDGFRA in complex
with ZINC000002931631 we conducted three independent
molecular dynamic simulations, each lasting 100 nanoseconds.
Thus, a cumulative total of 300 nanoseconds of simulation data
was generated for this study. In the rst simulation, PDGFRA
was simulated in its apo form. For the second simulation, we
have taken the docked complex of PDGFRA in complex with
Avapritinib. In the third simulation, we have taken the docked
complex of PDGFRA in the complex with ZINC000002931631.
These comprehensive molecular dynamic simulations aim to
provide valuable information about the structural dynamics
and interactions of PDGFRA in its apo state compared to in
complex with the substrate ligands, shedding light on the
impact of binding of Avapritinib compared to
ZINC000002931631 as potential inhibitor of PDGFRA activity.
The results of this study may have implications in under-
standing the molecular mechanisms underlying PDGFRA
regulation and aid in the rational design of therapeutically
relevant compounds targeting this enzyme.
Analysis of PDGFRA dynamics during the simulated timescale

To comprehend the dynamics of PDGFRA, we conducted
various analyses, including Root mean square deviation (RMSD)
of the protein backbone (Fig. 10a), Radius of Gyration (ROG) of
the protein (Fig. 10b), the total number of intramolecular
hydrogen bonds within the protein (Fig. 10c), the energies
ments, and no of Entry

Number of smiles Cluster number

0.38 2197 06
0.40 1958 07

RSC Adv., 2025, 15, 851–869 | 861
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Fig. 8 (a) Comparative Tanimoto similarity analysis of Morgan and Pharmacophore clusters. (b) Comparative common smiles Tanimoto similarity
analysis of Morgan and Pharmacophore.

Table 4 Fingerprint overview – fingerprint names, ranges, number of common smiles from two clusters

S. no Finger print Range (min & max) Number of common smiles

1 Morgan ngerprint 0.29 to 0.38 220
2 Pharmacophore ngerprint 0.27 to 0.40

Fig. 9 Molecular interactions of Avapritinib and ZINC000002931631 compounds with PDGFR: above (a and b) panels represents the 2D and 3D
visualization of interactions of Avapritinib with PDGFR, where below (c and d) panels represents the 2D and 3D visualization of interactions of
ZINC000002931631 with PDGFR.

862 | RSC Adv., 2025, 15, 851–869 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 (a) Calculated PDGFRA protein's backbone RMSD in its apo state (RED), PDGFRA in complex with Avapritinib (BLUE), and PDGFRA in
complex with ZINC000002931631 (GREEN). (b) Calculated PDGFRA protein's Radius of Gyration in its apo state (RED), PDGFRA in complex with
Avapritinib (BLUE), and PDGFRA in complex with ZINC000002931631 (GREEN). (c) Calculated PDGFRA protein's total number of intramolecular
hydrogen bonds in its apo state (RED), PDGFRA in complex with Avapritinib (BLUE), and PDGFRA in complex with ZINC000002931631 (GREEN).

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2025, 15, 851–869 | 863
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Fig. 11 (a) Calculated PDGFRA protein's energy in its apo state (RED), PDGFRA in complex with Avapritinib (BLUE), and PDGFRA in complex with
ZINC000002931631 (GREEN). (b) Calculated energy of ligand for PDGFRA in complex with Avapritinib (BLUE), and PDGFRA in complex with
ZINC000002931631 (GREEN).
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(Fig. 11a and b) along with Secondary Structure Elements (SSE)
impact with respect to the simulated timescale.

The protein's backbone RMSD uctuated between 1.5 and
3.0 Å, with average values of 2.7, 2.5 and 2.2 Å for PDGFRA in its
apo state, PDGFRA in complex with Avapritinib, and PDGFRA in
complex with ZINC000002931631 at the binding site, respec-
tively. Signicant conformational changes in PDGFRA were
observed during the initial and nal 20 nanoseconds, particu-
larly in the presence of the ZINC000002931631 compound
complex at the binding site and in the apo state. These obser-
vations suggest that the ZINC000002931631 molecule induced
conformational alterations in PDGFRA. Notably, at approxi-
mately 20 nanoseconds, a sudden increase in RMSD from 1.5 to
2.5 Å in the PDGFRA backbone was observed when complexed
with the ZINC000002931631 molecule. Subsequently, the RMSD
stabilized at around 2.5 Å with an average of 2.2 Å. It is inter-
esting to note that the rise in PDGFRA RMSD, reaching up to 3.5
Å during the apo state simulation, was signicantly attenuated
when PDGFRA was complexed with Avapritinib and
ZINC000002931631.

The protein's radius of gyration (ROG) exhibited uctuations
within the range of 20.1 to 20.9 Å. The average ROG values for
PDGFRA in its apo state, PDGFRA in complex with Avapritinib,
864 | RSC Adv., 2025, 15, 851–869
and PDGFRA in complex with ZINC000002931631 at the
binding site were measured as 20.6 Å, 20.5 Å, and 20.4 Å,
respectively. Notably, signicant conformational changes in
PDGFRA were observed during the initial and nal 20 nano-
seconds, particularly in the apo state. However, PDGFRA in
combination with Avapritinib and ZINC000002931631 demon-
strated relative stabilization, showing no signicant uctua-
tions. These ndings suggest that the exibility of PDGFRA to
undergo conformational changes is attenuated upon substrate
molecule binding and stabilization within its binding pocket.

During the course of the simulation, notable variations in
the total number of intramolecular hydrogen bonds were
observed. These hydrogen bonds play a pivotal role in governing
the rigidity of the protein, thereby inuencing its ability to
undergo conformational changes, which is crucial for the
protein's activity. Specically, a higher number of intra-
molecular hydrogen bonds generally leads to increased rigidity
in the protein structure, limiting its exibility to adopt different
conformations. This exibility is known to be of critical
importance for the proper functioning of the protein in its
specic biological context. In our simulations, PDGFRA in its
apo state maintained an average of approximately 100 intra-
molecular hydrogen bonds throughout the simulated timescale.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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In contrast, when PDGFRA was complexed with Avapritinib and
ZINC000002931631, the average number of intramolecular
hydrogen bonds increased signicantly, with Avapritinib
maintaining an average of 170 hydrogen bonds and
ZINC000002931631 maintaining an average of 180 hydrogen
bonds. These ndings suggest that the presence of Avapritinib
and ZINC000002931631 in complex with PDGFRA induces an
increase in intramolecular hydrogen bonding, potentially
leading to a higher level of rigidity in the protein's structure,
thus limiting its functionality. Such stabilization of the
protein's conformation may have functional implications, as it
could modulate the activity of PDGFRA in response to ligand
binding.

In order to further validate the inhibitory potential of Avap-
ritinib and ZINC000002931631 compounds targeting PDGFRA,
we have investigated with particular focus on energy as a key
parameter throughout the simulated timescale. Our analysis
revealed that the average energy of the PDGFRA in its apo state
during the simulation was approximately −4300 kcal mol−1.
However, in the presence of Avapritinib, the PDGFRA exhibited
a different energy prole, with the average energy maintaining
approximately −5500 kcal mol−1. On the other hand, PDGFRA
was found strongly inhibited by ZINC000002931631 as evident
from its' much lowered energy with an approximate average of
Fig. 12 Calculated secondary structural elements (SSE) of PDGFRA pro
Avapritinib (middle panel), and PDGFRA in complex with ZINC00000293

© 2025 The Author(s). Published by the Royal Society of Chemistry
−5800 (Fig. 11a). Moreover, the binding energy prole of these
compounds during the simulated timescale reveal that Avapri-
tinib maintained an average of −35 Kcal mol−1 of binding
energy, whereas ZINC000002931631 exhibited −55 Kcal mol−1

of binding energy (Fig. 11b).
These ndings indicate that our proposed lead compound

ZINC000002931631 has a notable strong inhibitory potential on
PDGFRA and is very well comparable with FDA approved
PDGFRA inhibitor Avapritinib in the least case scenario. The
lower average energy observed in the presence of Avapritinib
and ZINC000002931631 suggests that the binding of these
compounds stabilize the PDGFRA conformation or affect its
interactions with the surrounding environment. The altered
energy landscape resulting from these compound bindings
could be associated with potential functional implications,
possibly inuencing the functional activity or substrate binding
capability of the PDGFRA. Further investigations are warranted
to elucidate the precise mechanisms underlying the observed
energy changes and their relevance to the enzymatic function of
the PDGFRA. The analyses of RMSD, ROG, and intramolecular
hydrogen bonds provided compelling evidence that specic
conformational changes in the PDGFRA protein underlie the
inhibitory potential of the Avapritinib and ZINC000002931631
compounds. However, the precise regions of the protein
tein's backbone in its apo state (top panel), PDGFRA in complex with
1631 (lower panel).
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responsible for these inhibitory conformational changes
remain uncertain. To address this question, we conducted
a thorough investigation of the secondary structural elements
(SSE) of PDGFRA throughout the simulated timescale.

Fig. 12 illustrates the changes in a few alpha-helices and
beta-sheets, particularly in regions adjacent to the initial 80–
100, 150, and 270 residues. The signicant changes observed in
these SSEs suggest their involvement in the inhibitory action of
the compounds. Notably, the overall SSE percentage increased
from 40.89% in the apo state of the protein to 41.10% and
41.94% for PDGFRA in complex with Avapritinib and
ZINC000002931631, respectively. These alterations in secondary
structural elements are believed to be responsible for the
observed uctuations in RMSD, ROG, and intramolecular
hydrogen bonds, particularly in the case of PDGFRA complexed
with Avapritinib and ZINC000002931631 at the binding site.
The conformational changes induced by these compounds
seem to affect specic regions of the protein, leading to
increased rigidity and inhibitory effects.

By shedding light on the dynamic changes in secondary
structural elements of PDGFRA, our ndings contribute to
a deeper understanding of the molecular interactions and
mechanisms underlying the inhibitory action of Avapritinib and
ZINC000002931631 compounds on PDGFRA activity. These
results may have implications for the design and development
Fig. 13 Molecular interactions observed between PDGFRA with Avapriti

866 | RSC Adv., 2025, 15, 851–869
of novel targeted therapies against PDGFRA-related disorders.
Further studies focusing on the specic interactions within the
identied SSEs could provide valuable insights into the precise
mode of inhibition and guide the rational design of more
effective therapeutic agents.
Molecular interactions between PDGFRA with Avapritinib and
ZINC000002931631

To delve deeper, we subjected the docked PDGFRA-Avapritinib
complex to simulation and examined the molecular level
interactions responsible for the inhibitory effect. Throughout
the simulation, Avapritinib formed upto 9 intermolecular
contacts with several residues (Fig. 13). Notably, strong hydro-
phobic interactions with LYS971; TRP586; LEU615; MET622;
ARG617; LEU661 and GLU587 was observed in order of their
interaction strength. Hydrogen bonds with LYS623; GLN619;
ARG585, TYR676 and ASP973 were noted. Among which,
TYR676 and ASP973 residues were noted as critically important
in stabilizing the PDGFRA-Avapritinib complex during the
docking studies.

On the other hand, in the simulation where
ZINC000002931631 was complexed with PDGFRA, the
ZINC000002931631 compound was found to be tightly bound at
the binding site throughout 100 ns of simulated timescale.
nib during the simulated timescale.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra06975g


Fig. 14 Molecular interactions observed between PDGFRA with ZINC000002931631 during the simulated timescale.
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Hydrophobic and water bridging interactions were observed as
a crucial role player than direct hydrogen bonds (Fig. 14), which
we believe to have led to conformational changes in the
PDGFRA, especially near the binding site, possibly facilitating
substrate binding. For example, TRP586 interacted with
ZINC000002931631 for about 90% of the simulation time, and
other residues, especially PHE969; LEU661; SER972, LEU615,
ARG617 and PRO653, were found to interact with
ZINC000002931631 for approximately 20% on an average of the
simulation time. Among these, PHE969; SER972 and LEU661
residues formed water-mediated interactions with
ZINC000002931631 for about 40% on average of the simulation
time, respectively. Thus, in accordance with an earlier study
that shows serine/threonine kinase has evolved to have large
free-energy penalties (4–6 kcal mol−1) to adopt an inactive state
relative to the active conformation when compared to tyrosine
kinase (PDGFR and KIT). Suggesting challenges associated with
designing type-I tyrosine kinase inhibitors in terms of selec-
tivity. 64 Thus, such computational methods can help to design
highly selective inhibitors for challenging drug targets.
Conclusion

In this study, we employed a machine learning-assisted hybrid
virtual screening strategy, which efficiently narrowed a library of
© 2025 The Author(s). Published by the Royal Society of Chemistry
1.048 million compounds to 220 candidates with potential
PDGFRA inhibitory activity—representing just 0.013% of the
original library. To validate these candidates, we utilized the
convolutional neural network-based KDEEP algorithm for virtual
screening, complemented by traditional genetic algorithm-based
docking methods. Notably, ZINC000002931631 demonstrated
comparable or even superior inhibitory potential against PDGFRA
compared to Avapritinib, underscoring the robustness and utility
of our machine learning approach. From docking and molecular
dynamics simulation studies, we uncovered several key molec-
ular–level interactions that are highly valuable for the design of
target-specic inhibitors for the PDGFRA drug target. These
ndings highlight the potential of ZINC000002931631 as
a promising candidate for further investigation. To translate our
computational ndings into practical therapeutic applications,
we plan to undertake a series of experimental validations.
Initially, in vitro assays will be conducted to evaluate Avapritinib's
inhibitory activity on PDGFRA and KIT mutants, along with its
effects on cellular proliferation and apoptosis in NSCLC cell lines.
These studies will help establish its potential as a targeted
therapy. Subsequently, in vivo assays using xenogra mouse
models will be performed to assess its efficacy in reducing tumor
growth and angiogenesis, as well as its ability to overcome
resistance compared to existing tyrosine kinase inhibitors. This
multi-stage experimental roadmap aims to rigorously validate the
RSC Adv., 2025, 15, 851–869 | 867
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ndings from this in silico study and advance them toward clin-
ical applicability. As this work represents a preliminary compu-
tational study, we remain committed to thorough experimental
follow-up to ensure the robustness and translational value of
our approach.

Data availability

All relevant data supporting the ndings of this study are
included within the manuscript. Any additional data or mate-
rials related to this work can be made available by the corre-
sponding author upon reasonable request.

Conflicts of interest

There are no conicts to declare.

References

1 D. Planchard, et al., Metastatic non-small cell lung cancer:
ESMO Clinical Practice Guidelines for diagnosis, treatment
and follow-up, Ann. Oncol., 2018, 29, iv192–iv237.

2 M. G. Oser, et al., Transformation from non-small-cell lung
cancer to small-cell lung cancer: molecular drivers and
cells of origin, Lancet Oncol., 2015, 16(4), e165–e172.

3 W. D. Travis, et al., International association for the study of
lung cancer/american thoracic society/european respiratory
society international multidisciplinary classication of
lung adenocarcinoma, J. Thorac. Oncol., 2011, 6(2), 244–285.

4 F. Islami, L. A. Torre and J. Ahmedin, Global trends of lung
cancer mortality and smoking prevalence, Transl. Lung
Cancer Res., 2015, 4(4), 327.

5 D. J. Raz, et al., Epidemiology of non-small cell lung cancer in
Asian Americans: incidence patterns among six subgroups
by nativity, J. Thorac. Oncol., 2008, 3(12), 1391–1397.

6 T. Wang, et al., Five-year lung cancer survival: which
advanced stage nonsmall cell lung cancer patients attain
long-term survival?, Cancer, 2010, 116(6), 1518–1525.

7 N. P. Nguyen, et al., Combined chemotherapy and radiation
therapy for head and neck malignancies: quality of life
issues, Cancer, 2002, 94(4), 1131–1141.

8 C. Gabay, et al., Adjuvant therapy in non-small cell lung
cancer: is targeted therapy joining the standard of care?,
Expert Rev. Anticancer Ther., 2021, 21(11), 1229–1235.

9 S. Parakh, et al., Overcoming drug relapse and therapy
resistance in NSCLC, Front. Oncol., 2023, 13, 1230475.

10 A. A. Farooqi and Z. H. Siddik, Platelet-derived growth factor
(PDGF) signalling in cancer: rapidly emerging signalling
landscape, Cell Biochem. Funct., 2015, 33(5), 257–265.

11 R. Board and G. C. Jayson, Platelet-derived growth factor
receptor (PDGFR): a target for anticancer therapeutics,
Drug Resistance Updates, 2005, 8(1–2), 75–83.

12 Z. Wang, et al., Emerging roles of PDGF-D signaling pathway
in tumor development and progression, Biochim. Biophys.
Acta, Rev. Cancer, 2010, 1806(1), 122–130.

13 A. N. Brooks, E. Kilgour and D. S. Paul, Molecular pathways:
broblast growth factor signaling: a new therapeutic
868 | RSC Adv., 2025, 15, 851–869
opportunity in cancer, Clin. Cancer Res., 2012, 18(7), 1855–
1862.

14 Y. Yang, et al., Inhibition of PDGFR by CP-673451 induces
apoptosis and increases cisplatin cytotoxicity in NSCLC
cells via inhibiting the Nrf2-mediated defense mechanism,
Toxicol. Lett., 2018, 295, 88–98.

15 K. Okamoto, et al., Antitumor activities of the targeted multi-
tyrosine kinase inhibitor lenvatinib (E7080) against RET
gene fusion-driven tumor models, Cancer Lett., 2013,
340(1), 97–103.

16 Gl Minniti, et al., Chemotherapy for glioblastoma: current
treatment and future perspectives for cytotoxic and
targeted agents, Anticancer Res., 2009, 29(12), 5171–5184.

17 J. Gille, Antiangiogenic cancer therapies get their act
together: current developments and future prospects of
growth factor-and growth factor receptor-targeted
approaches, Exp. Dermatol., 2006, 15(3), 175–186.

18 S. Bauer, et al., Early and next-generation KIT/PDGFRA
kinase inhibitors and the future of treatment for advanced
gastrointestinal stromal tumor, Front. Oncol., 2021, 11,
672500.

19 S. Dhillon, Avapritinib: rst approval, Drugs, 2020, 80(4),
433–439.

20 R. Danesi, et al., Druggable targets meet oncogenic drivers:
opportunities and limitations of target-based classication
of tumors and the role of Molecular Tumor Boards, ESMO
Open, 2021, 6(2), 100040.

21 P. Liu, et al., The use of molecular subtypes for precision
therapy of recurrent and metastatic gastrointestinal
stromal tumor, OncoTargets Ther., 2020, 2433–2447.

22 S. Grunewald, et al., Resistance to avapritinib in PDGFRA-
driven GIST is caused by secondary mutations in the
PDGFRA kinase domain, Cancer Discovery, 2021, 11(1),
108–125.

23 S. George, et al., Avapritinib in patients with advanced
gastrointestinal stromal tumors following at least three
prior lines of therapy, Oncologist, 2021, 26(4), e639–e649.

24 G. Landrum, RDKit: A soware suite for cheminformatics,
computational chemistry, and predictive modeling, 8,
2013, p. 31.

25 Lu Zhang, et al., From machine learning to deep learning:
progress in machine intelligence for rational drug
discovery, Drug discovery today, 2017, 22(11), 1680–1685.
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