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Insights into chemical substitution of metal halide
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Over a long period of time, frequent safety incidents in electric vehicles and portable electronics have
raised concerns about modern energy storage devices, particularly lithium-ion batteries. However, the
emergence of solid-state electrolytes (SSEs) with good thermal stability has eliminated potential safety
hazards of conventional lithium-ion batteries, such as liquid electrolyte leakage and explosions, allowing
all-solid-state batteries to attract intensive attention. Among all types of SSEs, halide SSEs have gained
research focus owing to their high ionic conductivity, good mechanical malleability, and excellent chemi-
cal/electrochemical stability. They have risen to the forefront of SSE research within just a few years. This
paper firstly summarizes state-of-the-art halide SSEs by briefly introducing various synthesis methods of
halide SSEs and comparing their advantages and disadvantages. Secondly, it introduces the composition,
structural types, and ionic conduction mechanisms of halide SSEs, analyzing their effects on ionic trans-
port behavior mainly from three perspectives: anion polarizability, cation disorder and stacking faults.
Primarily, it not only reviews typical substitution types for current halide SSEs, explaining how each type
optimizes ion transport kinetics, but also focuses on chemical substitution strategies to improve the
inherent thermodynamic stability window of halide SSEs and the complex electrode/SSE interface.
Additionally, this work proposes potential future research directions to address the challenges in the
development of halide SSEs. Overall, the review aims to provide fundamental understanding for designing
new halide SSEs and their structural characterization.

Given the increasing global demand for clean energy and efficient energy storage technologies, the development of all-solid-state lithium-ion batteries
(ASSLBs) with excellent performance and high safety has become a hot topic in scientific research. In particular, the research on solid-state electrolytes (SSEs)
has become critical to achieve higher energy density, longer cycle life and wider operating temperature range. In recent years, halide SSEs have attracted
much attention due to their outstanding physicochemical properties. High room-temperature ionic conductivity implies fast lithium-ion transport kinetics,
and good chemical stability and mechanical strength guarantee battery safety. In this review, the current research status on halide SSEs and the diverse syn-
thesis methods are first briefly described. Next, the basic structural framework and ion transport mechanism of halide SSEs are outlined, and the factors
affecting the ion transport behavior are summarized. It then focuses on chemical substitution and explores the specific mechanisms by which it enhances

lithium-ion transport kinetics and improves the stability of the electrode/SSE interface by optimizing the electrolyte structure and composition. In addition,
this paper also proposes key breakthrough directions for future halide SSEs, which is expected to provide a more solid theoretical foundation for subsequent

research work.

1. Introduction

As the energy storage market evolves, all-solid-state lithium-ion
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batteries (ASSLBs) are gradually replacing traditional liquid
lithium-ion batteries, becoming the cornerstone of large-scale
energy storage systems. These batteries address the growing
demand for high-energy and high-power storage in power
grids and public utilities. The primary advantage of ASSLBs
lies in their potential to surpass the energy density limits of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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liquid lithium-ion batteries, aiming for a high energy density
of 500 Wh kg~'."* Additionally, the use of solid-state electro-
lytes (SSEs) with strong thermal stability eliminates the safety
risks, such as thermal runaway and explosions, associated with
flammable organic electrolytes. SSEs, a critical component of
ASSLBs, have been extensively researched and come in various
forms, including polymers, oxides, sulfides and halides.
Generally, polymeric SSEs, including poly(ethylene oxide)
(PEO), poly(vinylidene fluoride) (PVDF), polyacrylonitrile
(PAN), and poly(methyl methacrylate) (PMMA), exhibit better
mechanical flexibility, lower mass density, and straightforward
synthesis methods. However, their intrinsic ionic conductivity
is slow, which is commonly addressed by incorporating
ceramic fillers, ionic liquids or metal-organic frameworks
(MOFs) to form composite polymeric SSEs.”” Oxide SSEs
provide good environmental and electrochemical oxidation
stability but require high sintering temperatures (over 1000 °C)
and lack flexibility, resulting in high fabrication costs.'®'"
Sulfide SSEs boast high ionic conductivity with excellent
mechanical machinability, but they are highly sensitive to
water, producing toxic H,S gas upon hydrolysis, which quickly
deteriorates their ionic conductivity.””™* Additionally, their
poor electrochemical oxidation stability limits compatibility
with conventional 4 V cathode materials. In contrast, halide
SSEs have garnered significant attention in ASSLBs research
owing to their high ionic conductivity (~107> S ecm™) at room
temperature (RT), wide electrochemical stability window, excel-
lent environmental tolerance and diverse synthetic routes.””™"”
These properties allow halide SSEs to overcome many limit-
ations of other SSEs.

The development of halide SSEs has undergone significant
changes, as illustrated in Fig. 1, which highlights key mile-
stones chronologically. Generally, the evolution of halide SSEs
can be divided into two phases, with a pivotal shift occurring
in 2018. Before 2018, halide SSEs were held back by their low
ionic conductivity, which limited their potential for practical
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use. At the same time, SSEs like oxides and sulfides were
advancing rapidly, causing halide SSEs to attract less interest
and resulting in minimal experimental and theoretical explora-
tion during this period. However, a breakthrough came in
2018 when Asano et al. successfully synthesized two halide
SSEs with high ionic conductivity, i.e., Li;YCl (5.1 x 107* S
em™") and LizYBre (1.7 x 107 S em™").** This marked a major
milestone in halide SSEs development, as it was the first time
their ionic conductivity surpassed the 1 x 10> S cm™
threshold. Following this discovery, research interest in halide
SSEs surged, leading to the development of various high-ionic-
conductivity halide SSEs in just five to six years, such as
LizAlFs, LizGaFs, LizInClg, LizScClg, LizErClg, LiyScy3Cly,
LizHoBrg and LizErls.>>?°"** More importantly, given that all
constituent elements of ternary halide SSEs are exchangeable,
the structure and chemical composition of the halide SSEs
family have been greatly enriched by chemical substitution of
elements, e.g., Li;_yM;_,Zr,Cls (M = Er/Y), Liy,Zr;_,Fe,Clg (0 <
x < 0.5), LizY;,In,Cls (0 < x < 1), LizYBr;Cl; and
LizInCl, gF; ,.26*8294344 These substituted halide SSEs surpris-
ingly demonstrate significantly improved ionic conductivity
compared with their original counterparts.

It is important to note that halide SSEs encounter inter-
facial challenges similar to those observed in other SSEs,
including significant interfacial side reactions, inadequate
interfacial contact and the formation of space charge layers, all
of which hinder their further advancement.*>*® To tackle
these issues, two well-established interface modification strat-
egies have been extensively explored. The first involves the
application of functional coatings (e.g., LiF, Li;PO,) onto the
surface of halide SSEs, which serves to mitigate interfacial side
reactions and lower interfacial impedance.?’~*° The other strat-
egy focuses on the design of nanostructured architectures or
the incorporation of a flexible interfacial layer on the halide
SSEs surface, effectively improving the physical contact
between halide SSEs and electrodes.’*>® Nevertheless, these
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(~1.4x10 S cm™)**
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Fig. 1 The development history of halide SSEs for ASSLBs with representative achievements.
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approaches fail to address the intrinsic electrochemical stabi-
lity of halide SSEs. To achieve significant interface modifi-
cation, it remains crucial to modify the surface chemistry of
halide SSEs through chemical substitution. Specifically,
anionic substitution can regulate the reactivity of the halide
SSEs’ surface, thereby facilitating the formation of a stable
interface with the electrode. Furthermore, the chemical substi-
tution strategy helps optimize the mechanical properties of
halide SSEs, thereby minimizing the formation of cracks.

The synthetic strategies of halide SSEs have also been
widely discussed in recent years. Each synthesis route features
unique operating conditions and processing parameters that
influence the crystal structure and ionic transport behavior of
halide SSEs, ultimately affecting the electrochemical properties
of ASSLBs. Currently, the most widely used synthesis method
is mechanical ball milling, which requires precise control over
milling time and speed.>'’ In this process, the mechanical
energy generated during high-energy ball milling is converted
into the activation energy needed for precursor chemical reac-
tions, resulting in metastable halide SSEs with low crystalli-
nity. Alternatively, solid-phase sintering can be used to
increase the crystallinity of halide SSEs and achieve a more
stable structure. This method involves sealing the precursor in
a vacuumed quartz tube and continuously heating it at elev-
ated temperatures (typically above 350 °C). However, both ball
milling and solid-phase sintering are energy-intensive and
time-consuming processes, often producing samples that are
not homogeneous and that can form impurity phases due to
element volatilization at high temperatures. Therefore, it is
imperative to explore the liquid phase synthesis methods with
mild reaction conditions and high-purity products. A pioneer-
ing study by Li et al. demonstrated the first aqueous synthesis
of halide SSEs through the production of Li;InCls.>*® In this
process, raw materials were dissolved in water, naturally dried
in air to form Li;InCls-H,0, and then heated in a dynamic
vacuum at 100-200 °C for 4 hours to produce high-purity
Liz;InClg. Since then, several liquid-phase synthesis methods
have been developed, such as ammonium-assisted wet chem-
istry, vacuum evaporation-assisted synthesis, ethanol-mediated
LizInCl, synthesis and freeze-drying techniques.”’**>® The
liquid-phase synthesis method, while offering significant
advantages in terms of material homogeneity, controlling the
microscopic morphology or size of SSEs, and fabricating elec-
trode sheets, is more complex and costly. More importantly, it
imposes higher requirements on the humidity tolerance of the
precursor. Therefore, current research on liquid-phase syn-
thesis primarily focuses on Liz;InCle. As such, there is still con-
siderable progress needed before this method can be widely
applied.

This review underscores the most recent progress in the
realm of halide SSEs and provides a comprehensive under-
standing of the structure-property relationship for halide SSEs
through the lens of chemical substitution. By systematically
analyzing the effects of chemical substitution on ionic conduc-
tivity and interfacial stability, it elucidates the fundamental
linkages between diverse substitution mechanisms and the
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electrochemical performance of materials, thereby establishing
a more resilient analytical framework. Moreover, this study
outlines promising avenues for future research on chemical
substitution strategies in halide SSEs, encompassing high-
throughput screening of substitutional elements and the
design of novel halide SSEs driven by machine learning. These
insights offer a forward-thinking perspective that can steer the
ongoing development and refinement of halide SSEs, with the
objective of rapidly increasing their market share in the com-
mercial landscape of ASSLBs.

2. Structure and ion transport in
halide SSEs

2.1 Structural composition

The general formula of ternary halide SSEs is Li,MX;, (M =Y,
Sc, In, La-Lu, etc., X = F, Cl, Br, I), which is a completely new
crystal structure formed by doping rare-earth element M based
on LiX structure. Since the ionic radii of the halogen elements
are larger than those of almost all rare-earth elements, so the
ternary halide SSEs take the anion close-packed sublattice as
the basic framework. Among them, the radii and polarity of
cations and anions have a remarkable effect on the crystal
structure. According to the Pauling coordination polyhedron
rule, close contact of cations and anions is the prerequisite for
the stabilization of crystal structures. Hence, Liang et al. gener-
alized the structures of all halide SSEs and innovatively pro-
posed to classify the crystal structures by using the radius ratio
of M cation to X anion (r"/77), marked as tp.””

For the currently dominant Li;MX, and Li,MX,-type SSEs, ¢
=0.732-0.414, the anion sublattice can be partitioned into hex-
agonal close packing (hcp) and cubic close packing (ccp), as
shown in the Fig. 2.°® Further refinement of these two sublat-
tices based on the ¢ values leads to two conclusions: (1) when ¢
= 0.637-0.599, the close-packed anions are stacked in ABAB
mode. Due to the different symmetric distributions of Li* and
non-Li" cations on the octahedral (Oct) sites, trigonal (space
group: P3m1) and orthorhombic (space group: Pnma) struc-
tures are formed, such as LizYClg and Li;YbCls.*%° (2) With
¢t value decreases, the close-packed anions are stacked in
ABCABC mode. Given the difference in cation occupancy,
monoclinic structures (space group: C2/m) and spinel struc-
tures (space group: Fd3m) are formed, such as LizInCls and
Li,MgCl,.**°

Furthermore, the rare-earth halide UCI; (U = La-Sm), featur-
ing a non-close-packed anion lattice, exhibits a unique and fas-
cinating structural framework.*>*>% In contrast to convention-
al halide SSEs, the metal cations in UCl,-type structures (space
group: P6;/m) adopt ninefold coordination, forming tricapped
trigonal prismatic polyhedra. This high-coordination-number
structure not only stabilizes the metal cations but also gener-
ates abundant one-dimensional Lithium-ion migration
pathways.®®®> Consequently, UCly-type materials are widely
acknowledged as promising contenders for lithium superionic

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Common crystal structures of halide SSEs. (a) Trigonal structure. (b) Orthorhombic structure. Reproduced with permissions from ref. 60.
Copyright 2021, Elsevier. (c) Monoclinic structure. Reproduced with permissions from ref. 38. Copyright 2019, The Royal Society of Chemistry. (d)
Spinel structure. Reproduced with permissions from ref. 61. Copyright 2024, American Chemical Society.

conductors, holding substantial potential for advanced ASSLBs
applications.

2.2 Li" conduction mechanism

Li" migration in halide SSEs is realized by hopping motion,
and the hopping sites of Li" depend on the type of the anion
sublattice, resulting in different migration pathways.>*®® For
the hep structure, Li" hops among adjacent face-sharing Oct
sites (Oct-Oct) along the c-axis, forming rapid diffusion 1D
channels, whereas in the ab plane, there exist vast tetrahedral
(Tet) interstitial sites, which lie between the two edge-sharing
octahedra. They connect all the 1D channels (Oct-Tet-Oct)
and a 3D anisotropic diffusion network is ultimately formed
(Fig. 3a). However, Li" migration in these 1D fast channels is
prone to be blocked, resulting in ionic conductivities lower
than the theoretically calculated values. For the ccp structure,
Li" migration between different Oct sites along all directions
requires the assistance of Tet interstitial sites (Oct-Tet-Oct),
yielding a 3D isotropic diffusion network (Fig. 3b), which is
similar to the migration path along the ab plane in the hcp
structure. For the two ccp structures, the Oct sites for Li"
hopping are usually occupied by non-lithium cations in the
spinel structure, which also hinders the diffusion of Li*.'°
Therefore, the monoclinic phase structure may be the most
favorable structure for Li" migration in halide SSEs, which has
also been demonstrated by experiments and theoretical
calculations.?®>%%”

© 2025 The Author(s). Published by the Royal Society of Chemistry

In addition to the long-range diffusion characteristics,
short-range diffusion caused by defects (vacancies and intersti-
tial sites) also affects the migration behavior of Li'. The possi-
bility of carriers jumping between neighboring Octahedral
sites depends on the content of the surrounding active Li* and
vacancy concentrations. As suggested by Famprikis et al., the
diffusion mechanism mediated by vacancy clusters is the main
ionic conduction mechanism.®® Higher vacancy concentration
and lower adjacent Li* content would be more favorable for Li"
transport. Van Der Ven has calculated the migration barriers
of Li" in different close-packed lattices (Fig. 3d and e), which
confirmed the increase of vacancies number around the Tet
interstitial sites favors the reduction of the Li" migration
barrier.®® Although this migration pathway requires passing
through Tet interstitial sites, it provides the flattest energy
landscape. For Li;MXq-type, M®" replaces Li" at three Oct sites,
and two vacancies are created based on charge balance.
Among all Oct sites of the anion sublattice, the ratio of Li,
M?**, vacancies is 3 :1: 2. Therefore, the vacancies occupy 33%
of the Oct sites, providing vast available hopping sites for Li",
which is necessary to achieve high ionic conductivity.">”°

Indeed, the realization of ions’ hopping motion between
different sites requires overcoming the inter-site energy differ-
ence, which is related to the occupation of ions in the sur-
rounding sites. It should be noted that the Tetrahedral intersti-
tial sites act as the bridge in ionic conduction of halide SSEs.
When their adjacent Octahedral sites are occupied only by Li*

EES Batteries, 2025, 1, 364-384 | 367
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Fig. 3 (a and b) The Li-ion migration pathways in hcp anion lattice and ccp anion lattice. Reproduced with permissions from ref. 66. Copyright
2019, Wiley-VCH. (c) The schematic of the “Li-rich” environment. Reproduced with permissions from ref. 71. Copyright 2022, Elsevier. (d and e) Li*
diffusion and corresponding energy barriers in close-packed anion sublattice by vacancy clusters (divacancies in the layered form). Reproduced with

permissions from ref. 69. Copyright 2012, American Chemical Society.

or vacancies, this prevents strong electrostatic interactions
between cations and narrows the energy difference between
sites.”* Then the “Li-rich” environment is formed (Fig. 3c). In
addition, differences in Li" concentration and cation configur-
ation are also responsible for the different ionic conductivity.
Mo et al. systematically studied a sequence of halide SSEs
through ab initio molecular dynamics (AIMD) simulations and
concluded that low Li" content (approximately 40-60%),
sparse cation arrangement, and low cation concentration
make ion migration easier.””

2.3 Factors affecting ion migration dynamics

In addition to the migration pathways mentioned above, ion
transport kinetics can also be affected by many factors, includ-
ing lattice dynamics, cation disorder, and stacking faults, etc.
Lattice dynamics refers to the vibrations of crystal atoms at
equilibrium positions, which affects the magnitude of the acti-
vation barriers for ion migration.’” Reduction of Li* vibrational
frequency contributes to enhancement of fast Li' transport
performance. This can be explained by the softness of the
anion structural frameworks. When the more polarized anion
is bound to Li', the binding effect of Li" during the migration
is weakened due to the longer bond lengths, ie., a lower Li"
vibrational frequency is obtained (Fig. 4a), which leads to a
higher ionic conductivity.>® Therefore, superionic conductors
tend to possess low Li" vibrational frequencies, and their dis-
tinctive structural features are expressed as softer and more
polarized anion sublattices.’®”*”* As shown in Fig. 4b, by
replacing all the anions in Li;ErCls with the more polarizable
T, the polarization of the anion sublattice was elevated, obtain-
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ing the lower activation barrier and higher ionic conductivity.
However, with the addition of more polarizable anions, the
average vibrational frequency of the anion phonon band
centers was also degraded and the electrochemical oxidation
stability started to deteriorate (Fig. 4c).”> Muy attributed this
phenomenon to the reaction kinetics, arguing that the
reduction in vibrational frequency of the phonon band centers
diminished the anion migration enthalpy and facilitated the
oxidation reaction.”® Consequently, it is necessary to balance
the ionic conductivity and electrochemical stability when
probing new Lithium-ion conductors.

In halide SSEs systems with the same composition, cation
order-disordered arrangement can be caused by changing the
synthesis method and annealing temperature. Samples typi-
cally synthesized using mechanochemical methods have
higher cation disorder, favoring the formation of migration
channels with flat energy landscapes.””’® This was also con-
firmed by Schlem et al. on the arrangement of cation sites in
LizMClg (M = Er/Y).>* They found that Li;MClg prepared by
high-energy ball milling has the highest degree of cation dis-
order between the Er/Y sites (Fig. 4e), i.e., many M2 sites are
swapped to M3 sites. High M2-M3 disorder caused the change
of the repulsion force against the surrounding Li", prompting
Li" sublattice rearrangement (Fig. 4d), which dramatically
reduced the energy barrier for Li" migration along the c-axis.
At the same time, the reordered cation sublattices also led to
local structural distortions, which benefited the increase of the
polyhedral transition areas and the expansion of the bottle-
necks for Li* migration. A similar phenomenon was observed
in the study of Ito et al., where p-LizYCles with more disordered

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Factors affecting Li-ion transport behavior. (a) The diagram of anion polarizability affecting the activation barrier by changing the ion
vibrational frequency. (b) Plots of oo, E; and ¢ as a function of the Debye frequency for LizErXe (X = CL, I). Reproduced with permissions from ref. 25.
Copyright 2020, American Chemical Society. (c) Correlation curves of the oxidative potential limit with the anion phonon band centre for LiAlX4 (X =
Cl, Br, I). Reproduced with permissions from ref. 75. Copyright 2022, The Royal Society of Chemistry. (d) Influence of cation disorder on crystal struc-
ture. (e) Change of the Er2—Er3 disorder as revealed by Rietveld refinements (open squares) and G(r) fits (open circles). Reproduced with permissions
from ref. 24. Copyright 2019, Wiley-VCH. (f) Schematic diagram of stacking faults. (g) Predicted Li* migration barriers in four model structures.
Reproduced with permissions from ref. 31. Copyright 2022, American Chemical Society.

Y?* sublattice exhibited stronger ion transport behavior com-
pared with o-Li;YCle.”® Overall, cation sites’ disorder in the
crystal structure affects the arrangement of Li' sites, volume
changes and local distortions of the polyhedral, thus modify-
ing the Li" migration path and ionic conductivity.

Consistent with most layered oxide cathodes, stacking faults
may be prevalent in halide SSEs. However, the correlation
between stacking faults and ion transport was not effectively
demonstrated until 2022, when Sebti et al first demonstrated
the presence of stacking faults in Li;YClg, by using high-resolu-
tion synchrotron X-ray diffraction and DFT calculations, which
optimized Li" conduction by generating additional interlayer
channels for Li" migration and lowering the migration barrier
(Fig. 4f).3' Specifically, these planar defects altered the distri-
bution of Y*', forming face-shared YCls*~ octahedra and other
sparse Y** distribution regions. The presence of stronger
Coulomb repulsion near these YClg®~ octahedra made the Li*
diffusion channel along the c-axis locally disconnected, whereas
these disconnected Li sites were reconnected by loops to form
the new diffusion channel with lower migration barriers. And in
the sparse Y** distribution area, Li" were subject to weakened
Coulomb repulsion by Y** and the migration barrier was

© 2025 The Author(s). Published by the Royal Society of Chemistry

reduced. Fig. 4g shows the Li" migration barriers predicted by
the four different models, and it could be found that the stack-
ing fault model had the smallest migration barriers. This pro-
vided important data support for the fact that high concen-
tration stacking faults can boost the Li* migration in LizYClg. It
is worth mentioning that samples synthesized by mechano-
chemical methods tend to exhibit both stacking faults and
cation disorder due to the lower energy required for the occur-
rence of stacking faults.5%%"

In addition, the blocking effect of M**, grain boundaries
and impurities have also been shown to be important factors
affecting ion migration.*>**®* Only comprehensive consider-
ation of the influence mechanisms of all factors can help us
understand ion migration more deeply.

3. Enhanced ion transport by
chemical substitution

To date, although LizScCls exhibits the highest ionic conduc-
tivity (6 = 3 x 107> S cm™") among all ternary halide SSEs, it is
still not comparable to the excellent ionic transport properties
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of conventional organic electrolytes.>® In order to facilitate the
practical application of halide SSEs, chemical substitution is
considered to be an effective method to enhance ionic conduc-
tivity, which optimizes the components through elements with
different charges and radii to influence the structural frame-
work and vacancy concentration. Table 1 summarizes the
crystal structure and ionic conductivity changes of typical
halide SSEs before and after various chemical substitutions.
Chemical substitution can be categorized into three categories:
(1) aliovalent cation substitution; (2) isovalent cation substi-
tution; (3) anion substitution. It is worth noting that the influ-
ence of each substitution type on the ion transport mechanism
is completely different and will be discussed in detail below.

3.1 Aliovalent cation substitution

The enhancement of the Lithium-ion transport properties in
halide SSEs by aliovalent substitution cannot be separated
from many factors. In addition to the increase in vacancy con-
centration due to the introduction of aliovalent cations,
changes in Li" concentration and distribution as well as the
evolution of the local structural framework are also crucial. For
trivalent metal halides, tetravalent Zr** and Hf*" are often
used as aliovalent cations.>®#>9%193.1%4 Because of their abun-
dant reserves, low cost, suitable sizes and good redox stability,
they are expected to achieve large-scale commercial application
of halide SSEs.

As the packing style of the anion sublattice depends on the
cation-anion radius ratio, aliovalent substitution leads to the
transformation of the crystal structure or rearrangement of
the Li" sublattice, which results in a significant change for the
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carrier diffusion path. Park et al. successfully achieved struc-
tural modulation and ionic conductivity enhancement by
introducing Zr*" into Li;MCle (M = Er/Y).>® The crystal struc-
ture experienced evolution from the trigonal phase (phase-I) to
the orthorhombic I phase (phase-II) to the orthorhombic II
phase (phase-IiI) with the addition of Zr*" (Fig. 5a). Among
them, the orthorhombic II phase structure exhibited the
highest ionic conductivity (6 = 1.1 x 107 S cm™"), which was
attributed to the tilting of the (Er/Zr)Cls octahedra and the cre-
ation of additional Tet interstitial Li3 sites (Fig. 5b), strength-
ening the 3D Li" diffusion path. As shown in Fig. 5c, the
ASSLB using Li, ¢33ET¢.633Z50.36,Cls as the cathode electrolyte
exhibited higher discharge capacity (more than 110 mAh g™)
and coulombic efficiency (96.4%), superior to that of the
LizPS,. In fact, this phase transition process is also related to
the sample preparation temperature. In another study, Park
et al. achieved the phase transition of Li;_,Yb; ,Hf,Cls from
the trigonal phase to the monoclinic phase at lower annealing
temperature (Fig. 5d), exhibiting higher ionic conductivity.”® It
was attributed to the fact that the presence of more Tet inter-
stitial sites in the monoclinic phase structure played an active
role in the establishment of the fast 3D diffusion network.
However, as shown in Fig. 5e, the trend of ionic conductivity
with doping amount is not linear. Moderate Hf'" doping
increases the vacancy concentration and provides more avail-
able sites for Li* hopping, whereas excessive Hf*" doping
causes a dramatic decrease in carrier concentration and con-
traction of lattice spacing, which in turn inhibits the Li" trans-
port behavior. Therefore, designing a reasonable doping
scheme to balance the vacancy content and carrier content is

Table 1 Comparisons of structure and ionic conductivity before and after chemical substitution (T refers to temperature)

Original materials ~ Crystal structures ¢ (S cm™) Modified materials Crystal structures ¢ (S cm™) T(°C)  Ref.
LizErClg hcep (P3m1) 8.7x107° Liy 633Er0 633ZF0.367Cle hep (pnma 10) 1.1x1073 25 26
Li;YClg hep (pnma) 6.08 x10™°  LizY,5Ing 5Clg cep (C2/m) 1.51x10™% 25 44
LizYClg hep (P3m1) 1.39x 107" Liy Y, Hf) cCly hep (P3m1) 1.49%x10™° RT 83
LizYClg hep (P3m1) — LizYBr;Cly cep (C2/m) 7.2%x107° RT 29
LizYbClg hep (P3m1) 1.9x107* Li 6Ybg 6Z1.4Clg cep (C2/m) 1.5x1073 30 59
LisLuClg hep (pnma 1) 4.0x107* Liy sLug 5Zro.5Clg hep (pnma 11) 1.5%x107° RT 84
LizHoClg hcep (P3m1) 1.0x107* Li, ¢HO( ¢Z1( 4Clg hep (pnma 10) 1.8x1073 RT 85
LizHoClg hep (P3m1) 1.2x107* LizHoCl,Br, cep (C2/m) 1.24x107% 25 86
LizInClg cep (C2/m) 8.8x107* Li, oIng 9Zry 1Clg cep (C2/m) 1.54x107° 20 87
LiInClg cep (C2/m) 4.7 x107* Liy 6INg 6Zr0.4Clg cep (C2/m) 1.25%x10™° RT 78
LizInClg cep (C2/m) 6.7x107* Li, ;Iny ;Hf, 5Clg cep (C2/m) 1.28x107° 25 88
LizInClg cep (C2/m) 9.7 x10™* Li, ¢Ing gTay ,Clg cep (C2/m) 4.47x107 30 89
LizInClg cep (C2/m) 8.49x10™*  Liy75Y0.16ET0.16Ybo.16IN0.25Z025Cls  ccp (C2/m) 1.17x10™° RT 90
LiInClg cep (C2/m) 9.8x107* Lis,oINg 75ZT0.15C0.05ET0.05Y0.05Cle cep (C2/m) 2.18x107 30 91
LizScClg cep (C2/m) 6.7x107* Li, 5S¢ 5210 5Clg cep (C2/m) 2.23x107° 25 92
Li;ScClg cep (C2/m) — Lis 3755C0.375ZT0.625Clg cep (C2/m) 2.2x107° 25 93
Li,Sc,/5Cly hep (pnma) 1.5x1073 Li,SC0.222IN0.444Cls hep (Fd3m) 2.0x107° 25 30
Li,ZrClg hep (P3m1) 4.0x107* Liy »5Z10 75Feg.25Clg hep (P3m1) 9.8x107* 30 43
Li,ZrCl cep (C2/m) 7.1x107° Li, ,Zr0 5(In/Sc)o 5Clg cep (C2/m) 2.1x107° 30 94
Li,ZrClg hep (P3m1) 5.7 x107° Liy 5Zr 5Y0.5Clg hep (P3m1) 1.19x10™° RT 95
Li,ZrClg hep (P3m1) 1.2x107* Lip »5ZT0 55Al g »5Clg hep (P3m1) 1.13x107° 25 96
Li,ZrClg hep (P3m1) 3.0x107* Lis 1ZT.05Mg0.05Cls hep (P3m1) 6.2x107* 25 97
Li,ZrClg hep (P3m1) 4.0x107* Liy 1Zr0.0sMn 05Clg hep (P3m1) 8.0x107* RT 98
Li,ZrClg hep (P3m1) 3.3x107* Lis 1ZrCl, O; 4 cep (C2/m) 1.3x107° 25 99
Li,ZrClg hep (P3m1) 3.97x 107" Liz 4ZrCl, 404 cep (C2/m) 1.46x107° 25 100
Li,ZrFq hep (P3m1) — Li,ZrF;5Cl hep (P3m1) 5.5x 1077 25 101
Li,HfCl, hep (P3m1) 3.98 x10™*  Li, zHf, ;In, 5Clg cep (C2/m) 1.05x107° 30 102
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Copyright 2023, The Royal Society of Chemistry.

the key to modulating ion transport behavior. This is evi-
denced in the study of Wang et al., who concluded that the
optimal ion transport behavior can only be realized when the
vacancy concentration is equal to the carrier concentration
(Fig. 5£).%*

It is worth mentioning that not all aliovalent substitutions
cause the transformation of intrinsic structure such as
Liz_,In;_,(Zr/Hf),Cls and Lis_,Sc;_,(Zr/Hf),Cls, which main-
tain the ccp structure throughout the solid solution
range.?” 88103106 Because their ionic radii are very similar,
doping does not make the average ionic radius of the central
metal change significantly. For these compounds, aliovalent
substitution enhances ionic conductivity mainly by the syner-
gistic effect of the Li" sublattice rearrangement and migration
path optimization. In the case of Liz;InCls with a typical layered
structure (Fig. 6a), In*" is only distributed in the (001) plane,
while Li* occupies both the (001) and (002) plane.”® After
doping Zr**, the Li* on the Tet interstitial site Li3 disappears,
and the Li" content on the M2/Li4 site increases, implying that

© 2025 The Author(s). Published by the Royal Society of Chemistry

Li" is more preferred in occupying the M2/Li4 site with the
mixed cation distribution. The former provides more vacancies
for Li" migration along the ab-plane, the latter raises Li"
diffusion rate along the c-axis due to the weakened coulombic
repulsion from high-valence cations. The redistribution of Li"
sites leads to the formation of migration channels (Lil/Li2-
Li3-M2/Li4-Li3-Li1/Li2) with lower activation barriers
(Fig. 6b), enhancing the 3D Li' diffusion. Similarly, the
enhanced 3D diffusivity can also be explained by the change
in the preferred orientation of lattice plane.?” For example, by
doping Zr*" in Li;ScClg, Li et al. made the original random
orientation ab planes tend to be aligned in a uniform orien-
tation (Fig. 6¢), which reduced the migration resistance of Li"
conduction in all directions (Fig. 6d), especially in the ab
plane.®> This optimized ion migration behavior was also
reflected by the excellent rate capability of the battery (Fig. 6e).
Notably, it is not difficult to find in Fig. 6d that the Li" conduc-
tion along the c-axis was the speed control step, which deter-
mined the overall Li" migration rate. Therefore, the effect of
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Zr"*" substitution on the change of c-axis channel size in
LizScClg was carefully considered. The researchers found that
the triangular bottleneck area for Li' migration along the
c-axis was increased with the increase of Zr** (Fig. 6f), which
lowered the migration barrier of the c-axis, obtaining a higher
ionic conductivity.”?

Recently, Li,ZrCls has attracted much attention due to its
cost-effectiveness and good environmental stability, but the
lower ionic conductivity restricts its further development, and
is related to its insufficient number of carriers."””'% In view
of this, Kwak and his coworkers doped In**/Sc*" in Li,ZrClg to
increase the carrier content in the (002) plane, favoring the
more convenient Li* migration along the ab plane.”* At the
same time, due to the difference in electronegativity of the
central metal elements, mixed ionic-covalent bonding is
formed in the crystal structure and local anisotropic lattice
expansion is triggered (Fig. 6g). The existence of mixed ion-
covalent bonding is the signature characteristic of rapid Li"
transport. In addition, attempts to dope trivalent low-cost
metal elements (such as Fe*", AI’**) and divalent metal

372 | EES Batteries, 2025, 1, 364-384

doping amount. Reproduced with permissions from ref. 94. Copyright 2022, Elsevier.

elements (such as Mg>*, Mn*") into Li,ZrCls have also been
shown to effectively improve ionic conductivity by increasing
carrier contents and broadening migration channels.**°¢%

3.2 Isovalent cation substitution

Compared with aliovalent substitution, the isovalent substi-
tution of the central metal cation does not affect the carrier
content and vacancy content. Instead, it enhances the ionic
conductivity mainly by changing the basic structural frame-
work or migration channel size due to the difference in ionic
radii. Li et al. elevated the ionic conductivity of Li;YCls by
doping In*", and its structure was gradually converted from
hep structure to ccp monoclinic phase structure (Fig. 7a).**

particular, the ionic conductivity of all samples reached 1 x
1072 S em™" when the doping amount exceeded 50%, which
confirms that the monoclinic phase structure is the most
favorable structure for Li" conduction. It is worth mentioning
that In** doping also significantly improves the humidity stabi-
lity of LizY;_,In,Cls, which is attributed to the formation of
LizY;_,In,Clg-xH,O intermediates to prevent the hydrolysis of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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LizYClg (Fig. 7b). Inspired by LizY; ,In,Cls, Zhou et al. syn-
thesized the chlorospinels Li,Scy ¢66_xIN:Cls (0 < x < 0.666),
which exhibited high ionic conductivity (1.83-2.03 x 107> S
cm™') over the entire compositional range.*® It was associated
with the low occupancy of Oct sites and Tet interstitial sites,
providing more vacancy sites and forming the 3D Li" diffusion
channel with a lower migration barrier (Fig. 7c¢ and d).
Particularly, the ASSLB assembled with Li,In;;;Scy/3Cls also
displayed favorable charge-discharge behavior and rate capa-
bility when matched with LiNij g5C0o1Mng 050, (NCM85), as
shown in Fig. 7e. In addition, although some computational
simulations have shown that La>" has the potential to enhance
ionic conductivity by increasing the lattice size and broaden-
ing the migration channels due to the larger ionic radius,
further experiments are needed for validation."***"*

3.3 Anion substitution

As the skeleton ions constituting the bulk structure of halide
SSEs, the local coordination environment of halogen ions
plays a crucial role in the ion transport rate. By changing the
polarization of the Li-X bond, modifications in the lattice
parameters and even anion sublattice stacking style can be
triggered.

Based on the fact that the more polarizable anion sublattice
is more beneficial for Li" migration, Tomita and his group
explored the effect of different halogen doping on the crystal
structure and ionic conductivity in Li;InBre.>"''> As expected,
F~ doping caused the contraction of the lattice parameter and
the decrease in ionic conductivity, while I~ doping led to the

© 2025 The Author(s). Published by the Royal Society of Chemistry

expansion of the lattice parameter and the increase in ionic
conductivity. Surprisingly, because CI~ doping is ordered
enough to compensate for the negative effects of lattice shrink-
age, the ionic conductivity was also ultimately improved. The
substitution mechanism was further explained in studies
regarding LizHoClg_,Br,, Liz;HoBre_,J, and
Li,ZrFe_,Cl.2%*'°" For example, Plass et al. obtained faster
Li" diffusion channels with low migration barriers by doping
LizHoBre with 1", which has a larger ionic radius and lower
electronegativity. This effect originated from the increase in
interplanar distance and coordination polyhedral volume,
which led to the widening of Li' diffusion channels.
Meanwhile, the weaker bond strength between Li" and X~ led
to the weakening of the binding force of the skeleton ion
against Li". It should be noted that the doping amount of I~
should not be excessive, as this affects the mixed distribution
of cation sites in the lattice and increases the electrostatic
repulsion, thus inhibiting the rapid Li" diffusion and lowering
the ionic conductivity.

Besides lattice expansion and lattice softening, anion sub-
stitution can also induce a change in the anion sublattice
stacking style. Liu et al. prepared a new halide family
Li3sMBr;Cl; (M = Y/Er), by mechanochemical milling and hot-
pressing (HP) treatment, which exhibited the same ccp mono-
clinic phase structure as the endmember LizYBrs.”® Li;YBr;Cl;
achieved ultrahigh ionic conductivity (~7.2 x 107> S ecm™),
which was the result of synergistic modulation of the two
factors. On the one hand, due to the mixed distribution of Li*
in the Oct and Tet interstitial sites, more vacancies were gener-
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ated in the Oct site and the energy barrier was lowered (Fig. 8a
and b), thus optimizing the 3D Li* diffusion channel. On the
other hand, the hot-pressing-treated samples formed denser
blocks and better grain boundary contacts, which greatly
reduced the grain boundary impedance and benefited the
overall ionic conductivity. The high conductivity of Li;YBr;Cl;
was further explained by a first-principles study."'? Intralayer
vacancy diffusion in the Li layer promotes interlayer concerted
diffusion between different metal layers, which accelerates the
Li" transport rate.

Significantly, although it is widely believed that 0>~ with
high electronegativity is not favorable for fast ionic conduc-
tion, many recent studies have demonstrated that O*>~ doping
possesses  unique advantages in enhancing ionic
conductivity.'*>'*® As shown in Fig. 8c, Tanaka et al. reported
a new oxyhalide SSE, LiMOCIl, (M = Nb/Ta), belonging to the
orthorhombic structure (space group: Cmc21), in which O~ is
only responsible for connecting the octahedra together.''* The
addition of O broadened the bottleneck size of the Li*
diffusion channel (1.939 A), achieving an ultrahigh ionic con-
ductivity of 1.07 x 107> S em™", which is comparable to those
of liquid electrolytes. In addition, O>~ doping can also affect
the ionic conductivity by changing the crystal structure and Li"
site distribution. Park and Cheng et al. achieved a structural
transition from the hcp trigonal phase to the ccp monoclinic
phase by increasing the amount of O°  doping in
Li,ZrClg.*®'® Accompanied by the stabilization of Li intersti-
tial sites and the enrichment of carrier concentration (Fig. 8d),
the ion transport channel was broadened and the ionic con-
ductivity was successfully raised above 1 x 107 S cm™.
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Interestingly, O>~ doping seems to enhance the amorphous
proportion of halide SSEs, which is extremely important for
inducing polyhedrons distortions and lowering the migration
barriers.**""”"'® Similar amorphous characteristics have been
recent studies on nitrogen doping. The
Liz,TaCl;N, synthesized by Hong et al. exhibits a highly amor-
phous structure, demonstrating exceptional ionic conductivity
(up to 7.34 x 107 S em™ ), 51gn1f1cantly exceeding that of most
conventional halide SSEs.?* This remarkable p