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d perarylation of cyclopentadiene:
synthesis of hexaarylcyclopentadienes†

Yohan Gisbert, a Pablo Simón Marqués, a Caterina Baccini,a Seifallah Abid,a

Nathalie Saffon-Merceron,b Gwénaël Rapenne ac and Claire Kammerer *a

While hexaphenylsilacyclopentadiene (hexaphenylsilole) is viewed as an archetypal Aggregation-Induced

Emission (AIE) luminogen, its isostructural hydrocarbon surrogate hexaphenylcyclopentadiene has

strikingly never been investigated in this context, most probably due to a lack of synthetic availability.

Herein, we report a straightforward synthesis of hexaphenylcyclopentadiene, via the direct perarylation

of cyclopentadiene upon copper(I) catalysis under microwave activation, with the formation of six new

C–C bonds in a single synthetic operation. Using zirconocene dichloride as a convenient source of

cyclopentadiene and a variety of aryl iodides as coupling partners, this copper-catalysed cross-coupling

reaction gave rise to a series of unprecedented hexaarylcyclopentadienes. The latter are direct

precursors of extended p-conjugated polycyclic compounds, and their cyclodehydrogenation under

Scholl reaction conditions yielded helicenic 17,17-diarylcyclopenta[l,l0]diphenanthrenes. These structurally

complex polyannelated fluorene derivatives can now be prepared in only two synthetic steps from

cyclopentadiene.
Introduction

Group-14 metallacyclopentadienes have attracted the attention
of the scientic community for decades, with their rst
syntheses dating back to the early 1960s.1,2 Among them, the
silicon derivatives, namely siloles, display remarkable elec-
tronic properties such as high electron affinity and electron
mobility, coupled to excellent photo- and electroluminescence.
As a consequence, these building blocks have been widely used
in electron-transporting and light-emitting materials for the
fabrication of organic optoelectronic devices.3,4 Whereas most
organic dyes suffer from aggregation-caused quenching of their
emission, thus inherently limiting their efficiency as organic
light-emitting diode (OLED) materials, B. Z. Tang et al. dis-
closed in 2001 the Aggregation-Induced Emission (AIE) behav-
iour of propeller-shaped silacyclopentadienes such as penta-
and hexaphenylsilole.2,5–7 These compounds exhibit negligible
emission in dilute solutions as opposed to an intense photo-
luminescence in the aggregate or solid state, which originates
9 Rue Marvig, 31055 Toulouse, France.
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from restricted intramolecular motions in combination with
limited intermolecular p–p stacking, thus favouring radiative
relaxation from excited states.8 Hexaphenylsilole is thus viewed
as an archetypal AIE luminogen, and structural variations in
polyarylsilacyclopentadienes progressively allowed modulation
of their properties,9 leading to various applications as materials
in high-performance OLEDs, chemosensors for analyte detec-
tion, biological probes and smart materials.10

Over the years, a variety of architectures have been reported
to be AIE active,8,10a,10b including polyarylcyclopentadienes
ArnH(6−n)Cp (n = 3–5) as pure hydrocarbon propeller-shaped
systems.11 Strikingly, despite being an isostructural hydro-
carbon surrogate of hexaphenylsilole hexaphenylcyclopentadiene
Ph6Cp (1a, Scheme 1) has never been investigated in this
context, most probably due to the lack of synthetic
availability of this compound and of its aryl-substituted deriv-
atives. To the best of our knowledge, the synthesis of
hexaphenylcyclopentadiene has only been reported once, by
Allen and VanAllan in 1943,12 with a revision of the mechanism
and synthetic intermediate structures published in 1972 by
Youssef and Ogliaruso.13,14 Hexaphenylcyclopentadiene 1a was
prepared in four steps and 39% overall yield starting from
tetraphenylcyclopentadienone, with two 1,2-additions of
phenylmagnesium bromide as key steps and a thermally-
induced [1,5] sigmatropic phenyl shi accounting for the
generation of the gem-diphenyl-substituted sp3 carbon
(Scheme 1a). According to the reaction conditions, this
synthetic route appears tedious, with limited functional group
compatibility and a low modularity related to the presence of
Chem. Sci., 2024, 15, 9127–9137 | 9127
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Scheme 1 Perarylated cyclopentadienes: reported and envisioned
synthetic strategies. (a) Multistep synthesis of hexaphenylcyclopentadiene
1a.12,13 (b) Palladium-catalysed direct arylation of cyclopentadiene yielding
pentaarylcyclopentadienes in a single step.20 (c) Copper-catalysed
microwave-activated perarylation of cyclopentadiene yielding hexaar-
ylcyclopentadienes in a single step.

Scheme 2 Optimised conditions for the model reaction, involving the
copper-catalysed diarylation of tetraphenylcyclopentadiene 3a to
yield hexaphenylcyclopentadiene 1a. Reagents and conditions: 3a (0.5
mmol), iodobenzene (3 mmol, 6 eq.), Cs2CO3 (1.5 mmol, 3 eq.), CuI
(0.05 mmol, 10 mol%), (±)-trans-1,2-cyclohexanediamine Cy(NH2)2
(0.10 mmol, 20 mol%), THF (2 mL), microwave irradiation (250 W
available), 200 °C max., 2 h.
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four, out of six, aryl substituents in the initial
cyclopentadienone.

In contrast with hexaarylcyclopentadienes, the pentaarylated
counterparts have been tremendously studied, especially as
neutral precursors of (super-)bulky cyclopentadienyl ligands in
the eld of coordination chemistry,15 but also for the elabora-
tion of new molecular machines incorporating propeller-
shaped rotating subunits, such as motors,16 gears17 or
winches.18 In this context, various strategies for the multistep
synthesis of polysubstituted cyclopentadienes have been
devised,19 the prominent one being the “tetracyclone route”,
which involves an aryl addition onto a cyclopentadienone key
intermediate and the subsequent reduction to the correspond-
ing cyclopentadiene. In 1998, Dyker, Miura et al. reported
a conceptually-novel approach for the synthesis of symmetrical
pentaarylcyclopentadienes, involving the ve-fold direct aryla-
tion of cyclopentadiene under palladium catalysis (Scheme
1b).20 This powerful method, leading to the formation of ve
new C–C bonds in a single synthetic operation, tolerates a large
variety of aryl bromides as coupling partners (including highly
sterically demanding ones15b,15i,21) and zirconocene dichloride
can be employed as a convenient source of cyclopentadiene.

Attracted by the efficiency and modularity of this approach
for the synthesis of our molecular machine prototypes,16–18 we
envisioned to develop a greener alternative involving copper(I)
as a cheap, abundant and environmentally-benign catalyst for
the direct arylation of cyclopentadiene. Indeed, the intrinsic
stability of the cyclopentadienide anion acting as nucleophile in
such C–C coupling was reminiscent of the well-established
Hurtley reaction, allowing the copper-mediated arylation of
stabilised carbon nucleophiles such as active methylenes.22,23
9128 | Chem. Sci., 2024, 15, 9127–9137
Much to our surprise, our initial attempts of cyclopentadiene
arylation in the presence of copper(I), using excess iodobenzene
as coupling partner, resulted in the formation of a new product,
aside from the expected pentaphenylcyclopentadiene. It turned
out that the latter can undergo a copper-mediated direct aryla-
tion under basic conditions to yield hexaphenylcyclopentadiene
1a. Given its structural proximity with hexaphenylsilole and,
more generally, the promising potential of hexaar-
ylcyclopentadienes as AIE luminogens for the fabrication of
high-performance optoelectronic devices, we initiated a project
aiming at the synthesis of such target compounds via a direct
six-fold arylation of cyclopentadiene (Scheme 1c).

Herein we report the copper(I)-catalysed direct perarylation
of cyclopentadiene, giving rise to a series of unprecedented
hexaarylcyclopentadienes as the result of the formation of six
new C–C bonds in a single synthetic operation. The structural
and optical properties of such perarylated cyclopentadienes are
unveiled, with an emphasis on their behaviour as AIE lumi-
nogens, and their direct conversion into p-extended helical
scaffolds such as tetrabenzouorenes is addressed.
Results and discussion

In our preliminary attempts to achieve copper-catalysed direct
arylation of cyclopentadiene, penta- and hexaar-
ylcyclopentadienes were produced in very low yields aer long
reaction times under conventional thermal activation, along
with numerous side-products. The latter most probably result
from incomplete 1- to 4-fold arylation processes, but also from
competitive Diels–Alder [4 + 2] cycloadditions of cyclo-
pentadiene and its partially arylated derivatives. To hinder this
unproductive pathway, arylation reactions were next carried out
at high temperature under microwave irradiation, so as to
favour in situ retro Diels–Alder reactions. In addition, consid-
ering that the most difficult steps in the direct perarylation of
cyclopentadiene are the h and sixth C–C couplings due to
major steric hindrance, the copper-catalysed arylation of tetra-
phenylcyclopentadiene (3a) using iodobenzene as coupling
partner was investigated as a model reaction (Scheme 2). A
single arylation thus affords pentaphenylcyclopentadiene (2a),
which can subsequently undergo a second C–C coupling to yield
the desired hexaphenylcyclopentadiene 1a. This system
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Variation of the cyclopentadiene source in the
copper-catalysed direct perarylation

Entry Cyclopentadiene source 1aa (%) 2aa (%) 1a + 2aa (%)

1b Cyclopentadienec,d 46 (88)e 22 68
2b [Cyclopentadiened + NaH]c 61 (92)e 19 80
3f CpNac 54 (90)e 0 54
4b Dicyclopentadieneg 23 (78)e 25 48
5 ZrCp2Cl2

g 54 (90)e 0 54
6h ZrCp2Cl2

g 61 (92)e 0 61
7i ZrCp2Cl2

g 27 (80)e 26 53

a Compounds 1a and 2a were isolated as a mixture by column
chromatography and the ratio of the two species was estimated by 1H
NMR spectroscopy. In cases when 2a was not detected, pure product
1a was directly isolated by column chromatography. b Reaction time
was increased to 2.5 h. c 1 equivalent. d Freshly distilled
cyclopentadiene was used. e The bracketed number in italics
represents the average yield per newly-formed C–C bond in product
1a. f 10 equivalents of iodobenzene were used. g 0.5 equivalent. h The
loading of CuI was reduced to 3 mol%. i The loading of CuI was
reduced to 0.3 mol%.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
m

aj
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

02
4-

08
-1

8 
21

:1
8:

11
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
considerably simplies the optimisation process, since only two
different arylation products may be formed and any competitive
Diels–Alder reaction is avoided due to the bulkiness of the
involved polyphenylcyclopentadiene species.

Under optimised conditions, tetraphenylcyclopentadiene 3a
was reacted with iodobenzene (6 equiv.) in THF (0.25 M) in the
presence of cesium carbonate (3 equiv.) as base and copper(I)
iodide (10 mol%, i.e. 5 mol% per new C–C bond in 1a) associ-
ated to (±)-trans-1,2-cyclohexanediamine (20 mol%) as catalytic
system. Aer 2 hours under microwave irradiation (200 °Cmax.,
250 W available power), full conversion of starting material 3a
was reached and hexaphenylcyclopentadiene 1a, resulting from
two consecutive arylations, was obtained in 88% isolated yield
(Scheme 2). An X-ray crystal structure of compound 1a was ob-
tained (Fig. 1, le, and S15†), thus unambiguously conrming
the structure of the perarylated cyclopentadiene.

During the extensive optimisation of this reaction, inuence
of the catalytic system, base, coupling partner, solvent,
temperature and thermal activation mode were thoroughly
screened. Detailed results can be found in the ESI† section (part
II.1, Tables S1–S5†). Importantly, the nature of the aryl halide
appeared to be crucial, as the reaction was totally inhibited
when bromobenzene was employed instead of iodobenzene, in
contrast to palladium-catalysed cyclopentadiene arylations re-
ported by Dyker, Miura et al.20

The optimal conditions of the model reaction were next
transposed to the perarylation of bare cyclopentadiene,
expecting the formation of six new C–C bonds in a single
synthetic operation instead of two previously. To that end, the
amounts of catalyst, base and coupling partner were adjusted.
Using freshly distilled cyclopentadiene in the presence of 12
equivalents of iodobenzene, the desired hex-
aphenylcyclopentadiene 1a was obtained in 46% yield, along
with 22% of pentaphenylcyclopentadiene 2a (Table 1, entry 1).

The efficiency of the perarylation reaction could be
substantially improved up to 61% by adding sodium hydride (1
equivalent) to the reaction mixture, in order to initially generate
in situ the cyclopentadienide anion, unreactive towards Diels–
Alder cycloaddition reactions (entry 2). The same trend was
observed when employing preformed solid sodium cyclo-
pentadienide, which in addition proved selective towards
Fig. 1 ORTEP top view of the molecular structure of
hexaphenylcyclopentadiene 1a (left) and hexaphenylsilole24 (right).
Thermal ellipsoids are drawn at 50% probability level. Hydrogen atoms
and solvent molecules (heptane, in the case of 1a) are omitted for
clarity.

© 2024 The Author(s). Published by the Royal Society of Chemistry
perarylated product 1a. At this point, it is important to under-
line that yield variations are signicantly amplied by the
sequence of six successive cross-couplings, since the 46–61%
amplitude in these perarylation reactions corresponds to
a narrow range of 88–92% for the average yield per newly-
formed C–C bond.

For practical reasons and given the high temperature
conditions of the reaction, it was next envisioned to exploit
dicyclopentadiene as a source of two cyclopentadiene units,
generated in situ via retro Diels–Alder reaction (entry 4). This
concept was validated by the obtention of hexa- and pentaary-
lated products, albeit in moderate yields that limit the synthetic
use of the process. Finally, as initially suggested by Dyker, Miura
et al.,20 zirconocene dichloride was employed as a source of two
cyclopentadiene units. This stable and easy to handle substrate
led selectively to the desired perarylated product 1a in 54% yield
(entry 5). The catalyst loading was then reduced by a factor 10 to
reach 3 mol% (i.e. 0.5 mol% per single cross-coupling), leading
to hexaphenylcyclopentadiene 1a in 61% yield, equivalent to
92% average yield per newly formed C–C bond (entry 6). A
further reduction of the catalyst loading to 0.3 mol% (i.e.
500 ppm per single cross-coupling) remains productive but the
yield of the sixth arylation is noticeably decreased, leading aer
2 h to 27% of the perarylated product 1a, along with 26% of the
pentaphenylcyclopentadiene intermediate 2a (entry 7 and Table
S6†). Finally, the reaction was scaled up by a factor 20 and was
run on 0.96 mmol of zirconocene dichloride, i.e. 1.92 mmol of
cyclopentadiene equivalent (Scheme 3 and Table S8†). Some
reaction parameters were adjusted, such as the medium
Chem. Sci., 2024, 15, 9127–9137 | 9129
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Scheme 3 Scope of the copper-catalysed direct perarylation of
cyclopentadiene, using zirconocene dichloride as a cyclopentadienide
source. Isolated yields are given as an average value of at least two
experiments and the bracketed numbers in italics represent the cor-
responding average yield per newly-formed C–C bond. Reactions
were performed on a 0.048 mmol scale, i.e. 0.096 mmol of cyclo-
pentadienide, unless otherwise stated. [a] The scale was increased to
0.96 mmol of ZrCp2Cl2 (i.e. 1.92 mmol of cyclopentadienide). [b] Yield
includes partially debrominated compounds.
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concentration and the available microwave power to afford,
aer 2 h, the desired hexaphenylcyclopentadiene 1a in 27%
isolated yield (267 mg).

The scope of the copper-catalysed perarylation reaction was
next examined, using the very convenient zirconocene dichlor-
ide as a source of two cyclopentadiene units. A variety of aryl
iodides were screened (Scheme 3), revealing that the 6-fold
arylation process is sensitive to electronic effects and has
a moderate tolerance towards steric hindrance of the coupling
partner. Indeed, in the presence of electron donating substitu-
ents, hexaarylation of cyclopentadiene took place with modest
to good efficiency, with average yields per new C–C bond in the
85–91% range for alkyl substituents (1b–1d) and in the 68–81%
range for the stronger methoxy donor (1h, 1i). In contrast,
strong electron withdrawing groups such as nitrile and nitro
moieties failed to deliver any hexaarylated product (1l, 1m). It is
important to note here that the absence of hexaar-
ylcyclopentadiene under such conditions does not imply that
the copper-catalysed direct arylation completely fails with
electron-poor coupling partners: the initial 1- to 5-fold C–C
couplings may still occur, while the sixth arylation is prevented.

In this reaction, halogen substituents are tolerated, with 1-
uoro-4-iodobenzene leading to hexa(4-uorophenyl)
9130 | Chem. Sci., 2024, 15, 9127–9137
cyclopentadiene 1j in 29% overall yield. Importantly, competi-
tive debromination was encountered when 1-bromo-4-
iodobenzene was used, thus showing that aryl bromides are
reactive under such conditions even though they are not effi-
cient as coupling partners (Table S1,† entry 4). The copper-
catalysed perarylation of cyclopentadiene also proved compat-
ible with more complex aryl iodides such as 4-iodobiphenyl and
2-iodonaphthalene, which gave in 46–58% overall yield the
corresponding hexaarylcyclopentadienes 1g and 1f, respec-
tively. The latter, incorporating six naphth-2-yl substituents, is
particularly sterically crowded but still undergoes free rotation
at room temperature, as concluded from the 1H NMR spectrum.
Further increase of steric hindrance was tested using 1-iodo-
naphthalene, which resulted in a severe drop of efficiency. A
similar study was carried out with iodotoluene positional
isomers: para and meta substitution resulted in comparable
efficiency (57% yield for 1c and 50% for 1d) whereas further
increase of steric hindrance with ortho substitution fully pre-
vented the sixth arylation, as shown by the selective formation
of penta(2-methylphenyl)cyclopentadiene in 32% yield.

Based on reported experimental and computational mecha-
nistic studies related to the Hurtley reaction22c,25 and more
generally to Ullmann-type couplings,26,27 we hypothesise that
Cu(I) is the active catalytic species in the copper-mediated ary-
lation of cyclopentadiene and that the catalytic cycle may
proceed as follows (Scheme S2†). In the rst step, the active
LCu(I)I catalytic species may undergo a displacement of the
iodide anion by the cyclopentadienide R5Cp

− (R]H or Ar)
present in the basic reactionmedium to yield the corresponding
LCu(CpR5) complex (L = ligand). Next, oxidative addition of the
iodoarene coupling partner may take place to afford a Cu(III)
intermediate, and the subsequent reductive elimination would
lead to C–C bond formation with the release of the arylated
cyclopentadiene product and of the catalytically-active copper(I)
species. Nevertheless, according to literature reports, mecha-
nistic pathways in Hurtley and Ullmann-type reactions appear
to be closely related to the substrates, ligands and reaction
conditions.22c,25,26 Therefore, aer the widely-accepted initial
formation of the LCu(CpR5) species by nucleophilic displace-
ment, alternative mechanistic evolutions cannot be ruled out,
such as a single-electron transfer (SET), an iodine atom transfer
(IAT) or a four-centre s-bond metathesis (Scheme S3†).

Next, the structural properties of hexaarylcyclopentadienes
were investigated and X-ray crystal structures of target
compounds 1a (Fig. 1, le, and S15†), 1b–d and 1h (see the ESI†
section, part VII) were obtained. They all share the same char-
acteristics and the structure of the cyclopentadiene ring in such
hexaarylated compounds is essentially the same as in penta-
phenylcyclopentadiene 2a.28 As expected, the cyclopentadienyl
ring is planar and in 1a the length of the endocyclic bonds
involving the sp3 carbon C1 is 1.53 Å (C1–C2 and C1–C5), thus
longer than the bonds involved in the buta-1,3-diene pattern
(C2–C3 and C4–C5: 1.35 Å; C3–C4: 1.50 Å). The endocyclic bond
angle at the sp3 carbon C1 (C2–C1–C5) is 102° whereas all other
angles within the cycle are in the 109°–110° range. As antici-
pated, hexaphenylcyclopentadiene adopts a propeller-shaped
geometry with the four phenyl rings located on positions C2–
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Aggregation-induced emission properties of
hexaphenylcyclopentadiene 1a. (a) Picture of 1a solutions with varying
H2O/THF ratios. (b) Data plot representation of photoluminescence
intensity of 1a at lmax = 443 nm (lEx = 350 nm) vs. H2O fraction in the
THF/H2O mixture. (c) Photoluminescence spectrum of 1a in pure H2O
(light blue curve), 10−7 M, lEx = 350 nm, and photoluminescence
spectra resulting from the successive additions of small aliquots (20 mL)
of THF (darker curves).
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C5 twisted with respect to the cyclopentadiene plane (44°–60°
torsion angles). Finally, the steric hindrance caused by the
remaining geminal phenyl groups on the sp3 carbon C1 is
accommodated by a distortion of the tetrahedral geometry with
a widening of the exocyclic C6–C1–C12 angle up to 116°.

Structural comparison between hexaphenylcyclopentadiene
1a and hexaphenylsilole24 (Fig. 1, right) highlights a distortion
of the geometry caused by the silicon atom, in particular for the
planar silacyclopentadiene ring, due to expectedly longer Si–C
bonds (1.86–1.87 Å) compared to the corresponding C–C bonds
in 1a.

The optical properties of hexaphenylcyclopentadiene 1awere
subsequently studied. Its absorption spectrum in THF solution
displays two maxima at 247 and 340 nm (Fig. S2†), which is
similar to the absorption spectrum of pentaphenylcyclopenta-
diene 2a.11e It is however blue-shied in comparison with
hexaphenylsilole (lmax = 250, 365 nm).29 As expected from the
numerous degrees of freedom resulting in free rotation of aryl
groups at room temperature in solution (as observed by NMR
spectroscopy), hexaphenylcyclopentadiene 1a is virtually non-
emissive in dilute THF solution (ca. 10−7 M). Upon addition of
increasing fractions of a miscible non-solvent such as water (in
which compound 1a is not soluble), the photoluminescence
intensity increases gradually and reaches its maximum in pure
water, with the maximum emission wavelength located at
443 nm (Fig. 2a, b and S3†). From Fig. 2b, it can be clearly seen
that a large fraction of water (>90%) is required to trigger
intense photoluminescence. Conversely, from the aggregate
state in pure water, the rotation of phenyl substituents can be
activated again by simple titration of the sample with THF. As
depicted in Fig. 2c, the addition of small aliquots of THF
resulted in the exponential drop of the photoluminescence
intensity owing to molecular solvation and subsequent disag-
gregation. In agreement with the behaviour of propeller-shaped
polyarylcyclopentadienes ArnH(6−n)Cp (n = 3–5),11

hexaphenylcyclopentadiene 1a thus displays AIE and appears as
a promising candidate as blue-emitter for optoelectronic
applications.

The electron-enriched hexa(4-methoxyphenyl)cyclopentadiene
1h also proved to be AIE active (Fig. S4–S6†) and most impor-
tantly, its emission peak is red-shied by 10 nm compared to 1a.
This underlines the possibility to tailor the optoelectronic prop-
erties of hexaarylcyclopentadiene AIE luminogens, and the
syntheticmethod developed above thus appears as a powerful tool
to access a large variety of unprecedented hexaar-
ylcyclopentadienes with ne-tuned properties.

Having established the robustness of the copper-catalysed
perarylation reaction and the promising optical properties of
hexaarylcyclopentadienes, we next aimed at increasing the
structural complexity of the products obtained in this process. It
was thus envisioned to exploit 2,20-diiodobiphenyl as bifunc-
tional coupling partner allowing for the formation of polycyclic
cyclopentadiene derivatives (Scheme 4). Reaction of zircono-
cene dichloride with 2,20-diiodobiphenyl (4 equivalents) under
copper-catalysed conditions gave rise to spirouorene 4 in 54%
yield (Scheme 4, top). This product formally results from the
coupling of cyclopentadiene with two 2,20-biphenylenes, with
© 2024 The Author(s). Published by the Royal Society of Chemistry
the formation of four new C–C bonds in a single synthetic
operation. Successive inter- and intramolecular arylation reac-
tions occur rst on adjacent positions of the cyclopentadiene to
generate an intermediate cyclopenta[l]phenanthrene (as an
anion under basic reaction conditions), which subsequently
undergoes a gem-diarylation on the most favoured position20b

thus yielding spirouorene 4. Importantly, the corresponding
cyclopenta[l,l0]diphenanthrene resulting from the coupling of
three 2,20-biphenyl moieties was not observed.

Given the highly promising properties of spirouorenes for
optoelectronic applications,30 the gem-diarylation of tetraphe-
nylcyclopentadiene 3a using 1.1 equivalent of 2,20-diiodobi-
phenyl was next attempted (Scheme 4, bottom). Much to our
surprise, the expected spirouorene was not formed upon spi-
roannulation in these conditions and 1,1,2,3-
Chem. Sci., 2024, 15, 9127–9137 | 9131
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Scheme 4 Copper-catalysed direct arylation of zirconocene
dichloride (top) and tetraphenylcyclopentadiene 3a (bottom) with 2,20-
diiodobiphenyl as coupling partner, yielding cyclopenta[l]phenan-
threnes. The reaction intermediates resulting from the successive C–C
bond-forming steps are depicted.
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tetraphenylcyclopenta[l]phenanthrene 5 was isolated instead.
Its structure was unambiguously conrmed by X-ray diffraction
analysis of a crystal obtained upon train sublimation (Fig. 3),
thus highlighting the fully planar character of the cyclopenta[l]
phenanthrene moiety decorated with twisted phenyl groups. As
such, compound 5 can be viewed as an analogue of propeller-
shaped hexaphenylcyclopentadiene 1a displaying an extended
p-conjugated core for enhanced emission properties in the
aggregate state31 and potential application in OLEDs.

The gem-diphenyl pattern found in cyclopenta[l]phenan-
threne 5 implies that migration of a phenyl group occurred
Fig. 3 ORTEP top view (left) and side view (right) of the molecular
structure of 1,1,2,3-tetraphenyl-1H-cyclopenta[l]phenanthrene 5.
Thermal ellipsoids are drawn at 50% probability level and hydrogen
atoms are omitted for clarity.

9132 | Chem. Sci., 2024, 15, 9127–9137
during the reaction, which is consistent with reports on similar
systems32 and which was in particular exploited as key step in
the only synthesis of hexaphenylcyclopentadiene reported to
date.13 In this reaction, we thus hypothesise that the copper-
catalysed diarylation takes place on adjacent positions of the
cyclopentadiene, leading to a 6-membered ring instead of the
more strained 5-membered ring required in the desired spiro-
uorene. Next, a thermally-activated [1,5] sigmatropic shi of
the phenyl group located on the sp3 carbon takes place, yielding
a planarised cyclopenta[l]phenanthrene fragment.

To get deeper insight into the occurrence of such aryl
migrations during copper-catalysed arylation of cyclo-
pentadiene with monoiodoarenes as coupling partners, penta-
phenylcyclopentadiene 2a was reacted with 1-uoro-4-
iodobenzene under optimised coupling conditions (Scheme
5). In the absence of rearrangement, only 7a should be ob-
tained, carrying both a phenyl and a 4-uorophenyl moiety on
the sp3 carbon of the cyclopentadiene core. Experimentally,
a mixture of perarylated regioisomers was evidenced by 19F
NMR in a 73 : 18 : 9 ratio and their structure was further
conrmed by the X-ray diffraction analysis of a single co-crystal
of the three isomers (see the ESI section, page S96†). Due to the
occurrence of [1,5] sigmatropic shis in cyclopentadiene
derivatives, and in particular in hexaarylcyclopentadienes,
synthetic methods relying on transition-metal catalysed aryla-
tion thus appear to be restricted to the preparation of
identically-substituted polyarylated cyclopentadienes. Even
with this limitation, the one-step synthesis of AIE-active hex-
aarylcyclopentadienes upon copper catalysis remains a power-
ful tool with promising applications in optoelectronics.

In addition, on top of their intrinsic properties, propeller-
shaped compounds 1 can also be viewed as direct precursors
of highly attractive p-extended scaffolds for organic electronics,
such as 17,17-diarylcyclopenta[l,l0]diphenanthrenes (also
referred to as 17,17-diaryltetrabenzo[a,c,g,i]uorenes, Scheme
6) and the corresponding spirobiuorenes.30b,33 In this context,
Stuparu et al. very recently disclosed the successful conversion
of pentaphenylcyclopentadiene 2a into 17-phenyl-tetrabenzo
[a,c,g,i]uorene upon mechanochemical Scholl reaction,34 thus
improving initial attempts by Dyker et al.35

Hexaphenylcyclopentadiene 1a and its tert-butyl and methyl
para-substituted counterparts 1b and 1c, respectively, were next
submitted to a Scholl reaction,36 with the aim to trigger the
formation of p-extended scaffolds. In spite of the wide set of
conditions tested, spirobiuorenes were never detected, which
can be accounted for by the high strain associated with the
formation of the second uorene pattern upon 5-membered
ring closure. Conversely, the planarised 17,17-diarylcyclopenta
[l,l0]diphenanthrenes 6b and 6c, resulting from the formation of
two new C–C bonds, were obtained in 72 and 61% yield,
respectively, upon treatment with iron(III) chloride (Scheme 6).
The non-substituted counterpart 6a was isolated in lower yield
(32%) due to partial chlorination of the phenyl para-positions,
as observed by mass spectrometry analysis of the crude mixture.

The structures of tetrabenzouorenes 6a–c were assigned
according to 1H and 13C NMR spectra, with the characteristic
resonance of the cyclopentadiene sp3 carbon at d = 68–69 ppm.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 5 Copper-catalysed monoarylation of pentaphenylcyclopentadiene 2a with 1-fluoro-4-iodobenzene, leading to the corresponding
hexaarylated product 7 as a 73 : 18 : 9 mixture of regioisomers.

Scheme 6 Synthesis of 17,17-diarylcyclopenta[l,l0]diphenanthrenes
6a–c from hexaarylcyclopentadienes 1a–c via a Scholl reaction.
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As expected, the protons located in the bay and ord regions are
particularly deshielded (8.53 < d < 8.80 ppm) and the 17,17-
diaryl substitution pattern is evidenced by the characteristic
AA’BB’ systems corresponding to the two para-substituted
phenyl groups in compounds 6b and 6c. For the latter, crystals
suitable for X-ray diffraction analysis were obtained upon slow
evaporation of dichloromethane/methanol solutions, thus
unambiguously conrming the obtained structures (Fig. 4, S26
and S28†). Similarly to hexaarylcyclopentadienes 1b-c, the steric
hindrance caused by the geminal aryl groups on sp3 carbon C1
is accommodated by a distortion of the tetrahedral geometry,
with a widening of the exocyclic C6–C1–C16 angle up to 117° in
compound 6b (Fig. S26†). As expected from the ortho-annula-
tion of the ve rings in the ord region,37 the tetrabenzouorene
scaffolds display a distorted structure with an helical geometry.
In compound 6c, the torsion angle C31–C3–C4–C34 is worth
Fig. 4 ORTEP top view (left) and side view (right) of the molecular
structure of cyclopenta[l,l0]diphenanthrene 6c. Thermal ellipsoids are
drawn at 50% probability level and hydrogen atoms are omitted for
clarity.

© 2024 The Author(s). Published by the Royal Society of Chemistry
28°, and this angle is reduced to 23° in uoreno[5]helicene 6b
incorporating tert-butyl instead of methyl para-substituents.
These values are in line with those reported in literature for 17-
monoaryl-34 and 17,17-dialkyltetrabenzouorenes,38 and the
variation of amplitude may be ascribed to the packing force in
the crystal. In any case, the racemisation barrier for such heli-
cenic species is low and both enantiomers cannot be separated
at room temperature.

The obtained 17,17-diarylcyclopenta[l,l0]diphenanthrenes
6a–c can be viewed as extended 9,9-diaryluorenes, one of the
most signicant classes of organic semiconductors and a key
building unit for the design of uorophores.39 As expected,
upon cyclodehydrogenation of precursors 1a–c and concomi-
tant planarisation of the structures, the absorption spectra
undergo signicant changes (Fig. S7–S9†). For tetrabenzo-
uorenes 6a–c, a bathochromic shi related to the extension of
their p-conjugated scaffold is observed, with two new bands
appearing at 371–378 nm and 389–397 nm, respectively, in
comparison with the spectra of hexaarylcyclopentadienes 1a–c.
Moreover, the increased structural rigidity in cyclopenta[l,l0]
diphenanthrenes 6a–c is revealed by the structuration of their
absorption spectra, and by the restoration of photo-
luminescence in solution. The emission spectra in dichloro-
methane solutions exhibit a mirror symmetry to the lowest
energy absorption bands, with two distinct emission bands
located at 410–416 nm and 425–436 nm, respectively (Schemes
S10–S12†).
Conclusions

In this work, the direct perarylation of cyclopentadiene was
achieved upon copper(I) catalysis and microwave activation to
give rise to hexaphenylcyclopentadiene, an isostructural
hydrocarbon surrogate of the archetypal AIE luminogen hex-
aphenylsilole. Using zirconocene dichloride as a convenient
source of cyclopentadiene and a variety of aryl iodides as
coupling partners, a series of unprecedented hexaar-
ylcyclopentadienes was synthesised according to this straight-
forwardmethod allowing the formation of six new C–C bonds in
a single synthetic operation.

The structural and optical properties of hexaar-
ylcyclopentadienes were investigated, with a focus on their AIE
behaviour. As expected from their propeller-shaped structure,
Chem. Sci., 2024, 15, 9127–9137 | 9133
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these compounds are virtually nonemissive in solution but
intense photoluminescence is observed upon aggregation, with
an emission spectrum depending on the nature of the aryl
substituents. Hexaarylcyclopentadienes thus appear as prom-
ising AIE luminogens for the fabrication of high performance
optoelectronic devices, and the Cu-catalysed perarylation reac-
tion offers a direct access to a large variety of derivatives dis-
playing ne-tuned structural and electronic properties.

Hexaarylcyclopentadienes were next exploited as direct
precursors of extended p-conjugated polycyclic compounds to
be used as organic semiconductors or uorophores. Upon
Scholl reaction conditions, the propeller-shaped scaffolds
underwent planarisation with the formation of two new C–C
bonds, thus yielding 17,17-diarylcyclopenta[l,l0]diphenan-
threnes. These structurally complex polyannelated uorene
derivatives displaying an helicenic structure can now be
prepared in only two synthetic steps from cyclopentadiene.

Experimental section
Procedure for the Cu-catalysed perarylation of
cyclopentadiene, using zirconocene dichloride as substrate

In a glovebox, zirconocene dichloride (14 mg, 0.048 mmol,
0.5 eq.), cesium carbonate (312 mg, 0.96 mmol, 10 eq.),
(±)-trans-1,2-cyclohexanediamine (7 mL, 0.06 mmol, 60 mol%),
copper(I) iodide (5.5 mg, 0.03 mmol, 30 mol%), anhydrous
degassed THF (1 mL) and a magnetic stir bar were placed in
a 10 mL tube designed for microwave irradiation. The appro-
priate aryl iodide (1.15 mmol, 12.0 eq.) was added and the
suspension was briey shaken before sealing the vial. The
mixture was then heated using microwave irradiation at 200 °C
for two hours, setting up the microwave with an available power
of 300 W and a maximal pressure of 20 bars (typically, the
pressure stabilised between 10 and 15 bars depending on the
conditions). Aer cooling down the reaction medium and
carefully releasing the pressure, the reaction mixture was
diluted with CH2Cl2 (10 mL) and ltered over a short Celite plug
(eluted with CH2Cl2). The solvents were removed and the crude
product was dissolved in CH2Cl2, adsorbed onto silica and
puried by column chromatography on silica gel to isolate the
desired hexaarylcyclopentadiene product.

Data availability

The data that support the ndings of this study are available in
the ESI† section. Crystallographic data for compounds 1a–1d,
1h, 5, 6b, 6c and 7 have been deposited at the The Cambridge
Crystallographic Data Centre under CCDC-2214598 to CCDC-
2214606. These data can be obtained from the CCDC via
https://www.ccdc.cam.ac.uk/structures.
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