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Permutation Symmetry in Spin Adapted Many-Body
Wave Functions'

Maru Song,® Ali Alavi,%®? and Giovanni Li Manni*¢

In the domain of exchange-coupled PNTM clusters, local emergent symmetries exist which can be
exploited to greatly increase the sparsity of the Cl eigensolutions of such systems. Sparsity of the
Cl secular problem is revealed by exploring the site permutation space within spin-adapted many-
body bases, and highly compressed wave functions may arise by finding optimal site orderings.
However, the factorial cost of searching through the permutation space remains a bottleneck for
clusters with a large number of metal centers. In this work, we explore ways to reduce the factorial
scaling, by combining permutation and point group symmetry arguments, and using commutation

A 2
relations between cumulative partial spin and the Hamiltonian operators, [(S(")) ,jf]. Certain

site orderings lead to commuting operators, from which more sparse wave functions arise. Two
graphical strategies will be discussed, one to rapidly evaluate the commutators of interest, and one
in the form of a tree search algorithm to predict how many and which distinct site permutations
are to be analyzed, eliminating redundancies in the permutation space. Particularly interesting
is the case of the singlet spin states for which an additional reversal symmetry can be utilized to

further reduce the distinct site permutations.

Understanding the ground- and excited-state electronic structures
of polynuclear transition metal (PNTM) clusters and their mag-
netic and catalytic properties represent important challenges in
modern electronic structure theory.

These compounds, abundant in nature, are the active sites
of metalloproteins and make key enzymatic reactions possible.
For example, FeS clusters are at the core of the nitrogenases,
enzymes responsible for the nitrogen fixation process for the
production of ammonia derivatives in soil and water; 219 the
oxygen evolving complex (OEC) in photosystem II consists of
a CaMn;0, cubane cluster, which is responsible for the water
oxidation reaction within the more complex photosynthetic pro-
cess.1IHI8 Biomimetic PNTM clusters also exist, such as the
Co(I)3Er(III) (OR) 4 cubane relevant in the context of the artificial
water splitting process.

PNTM clusters consist of transition metal ions (lanthanide
or actinide ions are also possible), at variable oxidation states,
whose valence d (or f) orbitals are partially occupied. In general,
the unpaired electrons at each magnetic site obey the first Hund’s
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rule and feature parallel spins. However, strong ligand field ef-
fects may cause some of the valence electrons to pair, effectively
reducing the formal local spin. Unusual spin structures may also
exist, arising from the combination of a metal center with com-
mutable spins with radical ligands, such that strong entanglement
between the spin states at the metal center and the ligands is ob-
served (spinmerism, proposed as an extension of mesomerism to
the spin degree of freedom).23725

The local spins couple across the magnetic sites, leading to a
plethora of energetically low electronic states.26 In this context,
electronic states can be distinguished into collinear states, with
spins across the sites parallel or anti-parallel aligned, and non-
collinear states, with spin across magnetic centers interacting at
an angle (in the simple angular momentum vector model).

In principle, quantum chemical simulations represent a conve-
nient tool to rationalize at the atomistic scale the chemical prop-
erties of PNTM systems, and could effectively contribute to the
design of man-made compounds of desired magnetic and/or cat-
alytic properties. Collinear states are often well described by
(broken-symmetry, BS) single determinantal wave functions, at
the core of Kohn-Sham DFT,727/46] upon an adequate choice of
the exchange-correlation functional. However, in general single-
determinantal strategies fail in describing the non-collinear inter-
actions across the magnetic centers, 4748l albeit techniques exist,
such as non-collinear DFT, and the extended BS-DFT, that
have shown some success.
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Multiconfigurational techniques based on the concept of ac-
tive space, 2057 such as CASSCF, 28767 CASPT2, 08472 RASSCF and
RASPT273"81l GASSCF and GASPT2,7382787 gplitGAS, 87782 and
MC-PDFT, 204100 can describe on equal footings collinear and non-
collinear electronic states with the minimal number of assump-
tions. However, the curse of dimensionality, i.e., the exponential
growth of the many-body basis with the size of the active space,
limits the applicability of these strategies to active spaces with
at most 18 electrons and 18 electrons, CAS(18,18).1017103/ The
all-ferric Fe(Il),S, cubane with 5 unpaired electrons per metal
center, would already require a minimal CAS(20,20) for a qualita-
tively correct description of the spin coupling across the four sites
for all low-energy spin states, which is prohibitively expensive
with conventional approaches. Malrieu’s difference-dedicated
CI (DDCNUO4ALL has been used with some success to predict
spin multiplets; however, DDCI wave functions also suffers from
an exponential scaling, and its computational limits are rapidly
reached. Important electron correlation effects such as the su-
perexchange mechanism, 14117 and metal-to-ligand (or ligand-
to-metal) charge-transfer excited states can be described quali-
tatively correctly only at the price of even larger active spaces,
which include orbitals and electrons from the bridging ligand
atoms. 181120 These forms of electron correlation have been dis-
cussed in the literature.!2l' Larger PNTM clusters, such as the P-
cluster and the FeMo-cofactor (FeMo-co) with their eight TM cen-
ters, make theoretical predictions based on multiconfigurational
approaches even harder, 1224131

Methods that approximate full-CI wave functions in
large active spaces, such as density matrix renormalization
group (DMRG),11324143l gelected configuration interaction
(Selected-CI), 14471261 and  stochastic strategies based on
FCIQMC26164‘86*‘1021034‘11&1201157'174 have been developed and
applied with some success to problems requiring large active
space wave functions. Yet, the ability of these schemes to solve
the CI secular problem within a chosen active space, strongly
depends on the compression of the eigensolutions, for example
by exploiting sparsity of the Hamiltonian and its eigenstates
(FCIQMC), or correlated dependencies of the CI coefficients
(DMRG). In turn the wave function compression is affected by the
chosen one-electron basis.1Z2 In general, dense wave functions
require larger bond dimension values in DMRG (M > 1 x 10%),
and larger number of stochastic particles (walkers) in FCIQMC
(Nyalkers > 1 x 1010) to converge, values that are computationally
prohibitive for routine computations.

In the context of exchange-coupled PNTM complexes, includ-
ing Fe(III) ,S, and Co(II);Er(IIT) (OR),, algorithms have been ad-
vised within DMRG to unitarily transform the active molecular
orbitals (MO) into one-electron bases that are more conducive
to fast convergence with respect to the M value. 170177 Gimj-
larly, within the spin-adapted FCIQMC algorithm based on the
graphical unitary group approach (GUGA),M8IU78R184 MO trans-
formations have been identified, that increase the sparsity of the
CI Hamiltonian and the corresponding ground- and excited-state
eigenvectors, dramatically favoring the convergence of FCIQMC
with respect to the walker numbers.26/86/118I1I9N70II85I186] 1 hag
numerically been shown that MO transformations that are opti-
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mal for DMRG differ from the onestha Oa%%z(g)/thi'lanDﬁOPgrl GuGa-
FCIQMC. 1851180/ Iy the case of FCIQMC, large active space cal-
culations, correlating up to 44 electrons in 32 orbitals for the
Fe(Il),S, cubane, CAS(44,32),21°170 and up to 56 electrons
in 56 orbitals for a Co(I);Er(III) (OR),, cubane, CAS(56,56),18°
have been performed at a relatively lower walker number for spe-
cific orbital orderings.

Orbital (site) orderings can be identified that lead to sparse CI
Hamiltonian matrices with a unique (quasi) block diagonal struc-
ture, when expressed in spin-adapted bases. Precisely this block
diagonal structure minimizes the mixing of CSFs, from which the
sparse wave functions arise. Also, in virtue of the blocking it has
been possible to selectively target excited states. 170

Using general model Heisenberg Hamiltonian operators
for clusters of various dimensions, shapes, and local spin value
at each magnetic site (in general Sj,c, > 1/2), Li Manni and co-
workers!?3 have identified the rationale behind the wave func-
tion sparsity and the blocking of the CI Hamiltonian matrix in
the commutation relations between cumulative partial spin oper-

ators, ,
(87) = (Z SM> , )
M=1

where M runs over the first » magnetic sites, and the Hamiltonian
operator, /. The choice of the Heisenberg model Hamiltonian is
two-fold. First, Heisenberg models describe the magnetic inter-
actions in exchange coupled PNTM clusters with an high degree
of accuracy, and any valuable observation in terms of sparsity can
be promptly transferred from the Heisenberg model to the full
ab initio Hamiltonjan, 2018070085093 Noreover, site reordering
is relevant only for open-shell electronic configurations, and its
effects in terms of sparsity become more important as the num-
ber of unpaired electron (seniority) increases; from this point of
view the Heisenberg model is most suited as the CI space consists
exclusively of unpaired electrons.
Specific site orderings may lead to vanishing commutators

() ] =, @

187H192

Commuting operators are associated with compatible observables,
which can be simultaneously determined. Furthermore, consider-
ing that cumulatively spin adapted bases, such as the GUGA con-
figuration state functions (CSFs), are by construction eigenbases
of cumulative partial spin operators, it follows that CSFs with dif-
ferent expectation value of partial spin operators may lead (when
Eq. is verified) to vanishing Hamiltonian matrix elements, caus-
ing the corresponding Hamiltonian matrix to exhibits a unique
block diagonal structure (vide infra). How can we identify a site
ordering that fulfills Eq. |2 Is such site ordering unique?
Considering that the smallest relevant partial spin operator is
S
function of such operator only if orbitals (and their electrons)
residing on one magnetic center are adjacent, the grouping of or-
bitals on each site will always be assumed in the remainder of this
document. Therefore, the permutation space to be investigated
scales as N!, where N is the number of magnetic centers, and

2
the one of a single site, < ) , and that a CSF can be eigen-
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the search for optimal site orderings becomes rapidly computa-
tional demanding for clusters with an increasingly larger number
of magnetic sites. Permutation and point group symmetries can
be exploited to substantially reduce the search for site orderings
that maximize wave function sparsity. This represents the main
focus of the present work.

Site ordering not only affect the sparsity of CI Hamiltonian ma-
trix of exchange coupled systems; in recent literature, its role
has been discussed in the context of the Jordan-Wigner transfor-
mation for converting systems of spins into systems of fermions
and vice versa; and in that context an extended Jordan-Wigner
transformation has been proposed to circumvent this depen-
dency, 1941195

1 Commutators Between Partial Spin and Hamilto-
nian Operators

The connection between site ordering, partial spin operators,
commutators and blocking of the CI Hamiltonian matrix in spin
adapted bases is quite remarkable, and it emerges from the well-
known cumulative spin couplings of the GUGA method, which we
briefly recall below.

As in other genealogically constructed spin eigenfunctions, 120

in GUGA, the spin of each individual electron is coupled to all
previous ones in a cumulative manner; therefore, each CSF is by
construction an eigensolution of any cumulative partial spin op-
erator (not necessarily over magnetic sites). In the context of
exchange-coupled PNTM clusters, it is reasonable to classify CSFs
on the basis of their expectation values over the cumulative par-
tial spin operators of the magnetic sites. The following CSFs

|uuu, uud,ddd) , luuu,udu,ddd) , |uuu,udd,udd) 3

(seniority)are utilized as an example. In equation 3} u and d
represent the cumulative spin coupling with § = 1/2 (spin-up)
and S = —1/2 (spin-down), respectively. In each CSF of Eq.
sites A, B and C are separated by commas. The three CSFs
have a common expectation value over (SA)Z, Sa(Sa+1)=15/4.
However, on the basis of the (SAB)2 = (Sa +S3)2 metric, the
first two CSFs are grouped together, sharing the expectation
value Ssp(Sap + 1) = 6, which is different for the third CSF,
Sap(Sap+1)=2.

If we consider two CSFs with different eigenvalues (a # b) over
(s)
N2
<s<”>) (CSF) = a|CSF)
N2
(S(”)> ICSF') = b|CSF') |
~ 2
and if {(S(")> ,%”} = 0, we may write
N2 . A N2
(CSF| <s<">) - (s<”>) ICSF'y =0

(a—b) (CSF|.#|CSF') =0,
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and since a # b, it must be deduced fhat ]{%1’)%%? %Bﬂ Q)06:1%, from

which the block diagonal structure of the Hamiltonian matrix
arises. In the example above, this well known property of com-
muting operators12Z would imply that CSFs with different (SAB)2
expectation values will not couple over .7, and the CI Hamilto-
nian matrix will exhibit a blocked structure over the (SAB)2 ex-
pectation values. Thus, it is pivotal to establish commutation re-
lations between cumulative partial spin and the Hamiltonian op-
erators for different site orderings to understand and gain control
over the structure and sparsity of the Hamiltonian matrix.

Considering that often magnetic interactions in exchange-
coupled PNTM clusters are well described by Heisenberg models,
and that for the Heisenberg model the evaluation of the above
mentioned commutators is relatively easy, we will describe com-
mutation relations and blocking on the basis of these models;
and, in virtue of the correspondence between the two Hamil-
tonian operators, any insight gained over the simpler model
can be transferred in first approximation to the more complex
ab initio Hamiltonian. The strategy of transferring information
from a simple model to a more complex one in the context of
wave function compression has been already utilized in previous
LI8I170093] 1t §s to be noted that in general exchange cou-
pled PNTM clusters exhibit local spin Sjycq > 1/2, and the analy-
sis below will deal with this general case, rather specific examples
with, say, S = 1/2 Heisenberg models.

Although Heisenberg models only approximately describe the
full ab initio Hamiltonians of molecules, they are useful to under-
stand the effect of orbital orderings on wave function compres-
sion. This is attributed to the fact that only u and d couplings are
involved in wave function compression. Empty and doubly occu-
pied orbitals are invariant under orbital orderings, This implies
that CSFs with high seniority contribute more than low senior-
ity CSFs to the wave function compression effects, as shown in
Figure As an edge case, zero seniority CSFs are merely sin-
gle Slater determinants, that are not affected by the ordering in
which orbitals are coupled.

Thus, rather than focusing on ab initio Hamiltonians, we
simplify the problem by restricting our analysis to Heisenberg
models, which still hold the essential features of wave func-
tion compression via orbital orderings. As illustrated with a
Co(ID3Er(IlI) (OR) 4 cubane cluster in Section |5, our analysis on
Heisenberg models can be easily extended to ab initio systems.

It is important to highlight that already Shavitt compared CI
expansions based on different orbital transformations.1 28 Unfor-
tunately, the orbital transformations he suggested and explored
and the chemical systems investigated were not conducive to any
major advantage in terms of compression, or reduced coupling
(sparsity), and no other work followed. On the contrary, in the
case of exchange coupled PNTM clusters the compression effects
that follow localizations (in case of ab initio models, based on
molecular orbitals) and site reorderings, are dramatic, with many
orders of magnitude reduction of the non-vanishing coefficients
in the CI expansion. This wave function compression is particu-
larly appealing for methods that take advantage of the sparsity,
including FCIQMC, and thus worthy investigating.

In the following we summarize two approaches to calculate

works.
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A 2
the {(SW) , I } commutators, the conventional algebraic ap-

proach based on the Levi-Civita symbols, and a faster graphical
approach.

1.1 Levi-Civita Approach

The commutator between a generalized Heisenberg Hamiltonian

P,Q € cluster sites, 4

and a cumulative partial spin operator over the first consecutive
n sites (Eq.[1) can be written as a sum of commutators between
the scalar products of local spin operators, multiplied by the cor-
responding magnetic coupling constants, Jpg,

[,%ﬂ (s@ﬂﬂ =Y iol$S0.8e Ss]. )
R.S

The scalar products may further be expanded into their Cartesian
components (i, j € {x,y,z}),
[Sp-80.8r-85] = ¥ [$5,.8484] 6)

t

The rank reduction relation®

may be applied to each component of Eq. [6}

Considering commutation relations of local spin operators
{S’;},S’Q} = i8pé;jSh, from angular momentum theory12, Eq.
suggests that non-vanishing commutators are of the form

[Sp-S0.Sr-Sx] . 8

which contain three spin operators over different sites (i.e., P #
OAQ#RAR# P), and the forth one, Sy, is one of the sites on
the left of the commutator, X = P or Q. Thus, [S4-S4,85-Sc]| =0,
as the spin operator appearing twice, S4, only appears on the
left side of the commutator. On the contrary, [S4-Sg,S4 -Sc] # 0.
For convenience, for the non-vanishing commutators we intro-
duce the ternary quantity Tapc,

TABC =-=2 [SA . SB,SB Sc] = ZiZSiijvi‘ﬁéS% = ZiSA 'SB X Sc,

ijk
9
where the prefactor —2 is conveniently chosen to absorb the over-
all sign in Eq. [4 as well as the prefactor of the cross product
(S4-Sp) that arises in
& a2 a2 a2 & &
(Sa+88)"=(S4)"+(SB) +2(S4-S5) - (10)
In Eq. E], we have employed the Levi-Civita symbol, &, which
exposes permutations in a way compatible with tensor analy-
sis. We also notice that the values of non-vanishing commuta-
tors are compatible with the definition of scalar triple product.
By definition, Typc is zero unless there are three different sub-
scripts, (ABC). Changing the order of the subscripts results in

4| Journal Name, [year], [vol.], 1
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a factor of (—1)?, where p is the number o f)alrWlse swaps of

the subscripts to recover the original (ABC) order. For example,
Tasc = Tpca = —Thac.

We consider the Heisenberg Hamiltonian operator of an isosce-
les triangle as an example

A = —Jxp (Sa-Sg) —Jpc (Sa-Sc+S5-Sc) , 1n

where the Jpc = Jyc equality applies. The commutation relation

[(Sx)zyﬂ -0 (forX=A, B, C) (12)
is promptly recognized, as its components are of the type
[SX ~Sx,Sp~SQ} = 0 (two identical spin operators on the same
side of the commutator). If the ABC site ordering is chosen,

each CSF is an eigenfunction of (SA + SB)Z. The commutator
[ (Sa+ SB)Z ,Jﬁ] can be simplified, considering that (S, + SB)2 =
(SA)2 + (SB)2 +2(S4-Sp) and that Eq.|12|applies. Thus,

[(SA +SB)2,<%] = —2Jap [(SASB)7(SASB)]

A

—2Jpc [(SA SB) ) (SA 'Sc)]

—2Jpc [(S4-S8) . (Sp-Sc) ]

= Jpc(Tac +Tupc) =0, (13)

where in the last step we have used the equality Tgac = —Tapc-
For the commutator vanishes, the corresponding Hamiltonian ma-
trix is certainly blocked on the basis of the partial spin eigenbasis
and the eigensolutions of . will be compressed.

In the ACB ordering all CSFs will be eigenfunctions of the oper-
ator (S, + Sc)z. The following commutator would be of interest

[ (Sa+8c)° Jf] ~2045 [ (84-8¢), ($a-85) ]

A

~2Jpc [(84-8¢) - (S4-8¢)]

—2J5¢ [(8a-Sc) . (S5-Sc) ]
= JapTcap +JIpcTacs

= (Jap—JBc) Tapc #0. 14

While in Eq. [13|the commutator vanishes, leading to the advan-
tageous blocking of the corresponding Hamiltonian matrix, in
Eq. the commutator in general does not vanish, as Jgc # Jap-
Thus, in the latter case a non-block diagonal structure of the
Hamiltonian matrix is to be expected under the (SA + §C)2 metric.
As shown in Fig. 6 of Reference [193] the sparsity monotonically
increases as Jpc approaches the J,g value.

1.2 Graphical Approach

The observations from Section enable a convenient graphi-
cal strategy to evaluate commutators between cumulative partial

N 2
spin and the Heisenberg Hamiltonian operators, {(S(")) ,H } ,

by relying on the triangle rules summarized in Algorithm [I]
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(b) [(81+8:+83)",. 7]

Fig. 1 Schematic representation of a rhombus cluster and the partitioning of the triangles on the basis of Algorithm Filled and empty circles
represent points in ¢, and in %, respectively. The inset collects the symmetry operations of the D, dihedral group.

Algorithm 1 Algorithm to Graphically Calculate Commutators

N2
1. Separate sites into two groups: % with n sites in (S(”>> R
and %, with the rest of the sites,

2. Identify all triangles consisting of two points (/,J) in ¢; and
one point (K) in %,

3. Apply the following formula:

N 2 0
{(S(")) 7%} =Y Uk—Jx)Tyk. (15)
[ﬁJECZ/[
Ke%,

For a given ordering of subscripts, say //K in Eq. the cou-
pling constant, J;x, between the site K in % and the site to its left
in the subscripts (J in the case of IJK subscripts) has a positive
sign, while the coupling constant J;x with the other site, 1, has a
negative sign.

As an example of the applicability of the graphical method, a
four-site rhombus cluster is considered (Figure[I). In calculating
{(Sl +S3)2 I ] , following Algorithm [1| we identify two nodes
belonging to ¢, ({1,3}) and two nodes belonging to % ({2,4}).
From the two sets, two triangles can be formed, namely (132)
and (134), which are marked in green and blue in Figure [1a]
respectively. The two triangles identify the entries in the sum-
mation in Eq. (see Algorithm [2). Similarly, in calculating
{(Sl +S, +S3) 7%}, the two groups 4 = {1,2,3} and % = {4}
are identified, from which three triangles can be drawn, namely
(124), (234) and (134) (different colors in Figure[Ib), correspond-
ing to the three summands in Algorithm 3]

Eq. shows that a source of (quasi) vanishing commutators
is the cancellation of pairs of magnetic coupling constants with
the same (or close) value, when an appropriate orbital/site or-

dering is chosen; thus, generally wave function compression can
be achieved both for ferromagnetic and antiferromagnetic inter-
actions, as long as a orbital/site ordering exists that leads to such
cancellation.

Algorithm 2 : [(Sl +S3)2 ,j?}

1. 9 ={1,3}, % ={2,4}

2. There are two triangles: T}»3 and T34

3. [(Sl +Ss)27fﬂ = (J12 = J23)T123 + (34— J1a) T34

Algorithm 3 : [(Sl +S, +Sg)2 7/?}

1. 9 ={1,2.3}, % — {4}
2. There are three triangles: T2, Tr34, and T34
3. [B1+8+8)", 2] =
(o4 = J14) W14 + (J34 — Joa) T34+ (J34 — J14) T34

2 Permutation Symmetry within the Hamiltonian

While in the previous section a graphical procedure has been
discussed to access the commutators between cumulative partial
spin and the Hamiltonian operators, in this section the reduction
of the dimensionality of the permutation space is discussed on the
basis of the internal symmetries of the Hamiltonian operator. Two
forms of Heisenberg Hamiltonian operators will be utilized, one
in which the Hamiltonian operator commutes with all cumula-
tive partial spins operator (Section[2.1)), and a less strict one that

Journal Name, [year], [vol.], 1 |5


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00061g

Open Access Article. Published on 23 april 2024. Downloaded on 2024-08-18 13:37:50.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Faraday Discussions

commutes only with the first m cumulative spins (Section|2.2)).

2.1 Hamiltonian Commuting with All Cumulative Partial
Spins

A general expression for an Heisenberg Hamiltonian that com-

mutes with all cumulative partial spins operators follows

N-1 K
A ==Y Tk (ZSI>‘SK+I- (16)
k=1 =1
The Heisenberg Hamiltonian operator of the isosceles triangle
and of the 4-site pyramidal structure (see Fig. [2) feature this form
of Hamiltonian operator.

. 4 Jo  e=a
Circumsphere | /:3

center Jig  —

Jis  =ee=

Fig. 2 Pyramidal structure that fulfills Eq. Notice that the base of
the pyramid is an isosceles triangle and the apex (vertex 4) is equally
spaced from the vertices of the base (1, 2 and 3). In the middle of the
pyramid the circumsphere center is also marked for a 5-site cluster that

fulfills Eq.

In order to obtain an isosceles triangle, given the first two sites,
1 and 2, the third site, 3, must reside in the plane dividing the
base in two equal parts and perpendicular to the 12 direction (a
two-dimensional degree of freedom). The 4-site polyhedron that
correspond to the Hamiltonian operator of Eq. [L6is obtained by
adding to the isosceles triangle a forth point residing on the line
passing from the triangle’s circumcenter and perpendicular to the
triangle plane (a one-dimensional degree of freedom). On the
basis of geometrical criteria, a 5-site system featuring an Hamil-
tonian as given by Eq. is also possible; starting from the 4-
site polyhedron of Figure [2| the fifth site can only be uniquely
located at the center of the circumsphere (no degree of freedom).
It is clear that on the basis of geometrical considerations, a 6-
site cluster that fulfills the conditions of the Hamiltonian oper-
ator of Eq. cannot exist, as a point in the three-dimensional
space that is equally spaced from all previous 5 sites does not ex-
ists. In molecular clusters the magnetic coupling constants are
not only dependent on the geometrical features of the cluster; on
the contrary, environmental effects could affect their values, and
ultimately magnetic symmetries may differ from the geometric
ones. It is therefore relevant, for pure amusement, to investigate
whether such a highly symmetric 6-site PNTM cluster could ex-
ists whose Hamiltonian features symmetries that go beyond the
fundamental geometrical limits. Such a system would have an
astonishingly sparse Hamiltonian matrix if expressed in a cumu-
latively spin-adapted basis.

For a 4-site pyramidal cluster (Fig.[2), Eq.[L6]reads as

S = *J]zS] ‘S27‘I[3 (S] +S2) 'S3 —J14 (S[ +S2 +S3) -S4. a7
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The (1234) site ordering guarantees all Commutators of such an

Hamiltonian with the cumulative partial spin operators to vanish.
It is worth mentioning that when applying the graphical approach
(Algorithm [1) the (1234) ordering renders uniquely isosceles tri-
angles, namely (123), (124), (134), and (234) that make (J;x —Jix)
in Eq. [15] consistently vanish.

Are there site permutations equivalent to (1234) in terms of
retaining vanishing commutation relations? From inspection of
Eq. it emerges that upon (12) permutation, all cumulative
partial spin operators still commute with the Hamiltonian op-
erator, making the (2134) site ordering identical to (1234); this
equivalence arises from the commutativity of dot products, i.e.,
Si-S ;= S ; -8;. Any other permutation would lead to one or more
non-vanishing commutators, thus compromising the block struc-
ture of the corresponding Hamiltonian matrix and the sparsity of
the corresponding eigensolutions.

2.2 Less Constrained Hamiltonians

Model Hamiltonians may also exist that commute only with the
first m cumulative partial spin operators

. N—1 min(K,m) . A
H=— ) Jik+1 ( Y Sl) “Sk1
K=1 =1

N-1 K N\
- Y (Z JI,K+ISI)'SK+1- (18)

K=m+1 \I=m+1

The 4-site square model Hamiltonian,

j?:Jedge(SA'SB+SB‘SC+§C'SD+SD'SA>
+Jdiag (Sa-Sc+85-Sp) . (19)

is an example of a cluster that fulfills Eq. for the first two sites,
m =2 (see also Reference [193)). In the following, two other exam-
ples will be discussed together with the permutation symmetries
that can be exploited in those cases. In practical applications,
even the simplest commutation relation between a local spin op-
erator and the Hamiltonian operator, [(Si)z I } =0, may lead
to important sparsity, in virtue of the separation of CSFs fulfilling
and violating first Hund’s rule.

2.2.1 The Diamond Cluster

The Heisenberg Hamiltonian operator of a 4-site cluster in a
rhombus shape (Figure (1) reads as

C%/Z:Jedge (S1~Sz+Sz-S3+S3-S4+S4~Sl)

+713 (S1-83) +J24 (82-84) . (20)

where Ji3 could be larger, equal or smaller than Jo4. The square
cluster with J13 = Jo4 = Jgjag is a special case of the rhombus. As
for the square cluster, the Hamiltonian operator (Eq. can di-
rectly be derived from Eq. with m = 2 (with some relabeling

Page 6 of 18


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00061g

Page 7 of 18

Open Access Article. Published on 23 april 2024. Downloaded on 2024-08-18 13:37:50.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

of the sites), and it commutes with (Sl)z and (8, +S3)2 (partial

spin over diagonal interactions), but not with (@1 +S,+ 33)2. As
shown in Algorithm [2] the site ordering (1324) leads to a vanish-
ing commutator [ (S + 33)2 ,fz’g] =0, for J13 = Jo3 and J34 = J124,
and it is to be preferred over the (1234) ordering, which instead
does not exhibit such a vanishing commutation relation.

The permutation group of the rhombus is the D, dihedral group
of order h = 4, which is made of the identity (E) and the three C,
rotations around the Cartesian axes (Fig. , and it is to be distin-
guished from the D,; point group symmetry the system belongs
to. The list of N!/h = 6 symmetrically non-equivalent site per-
mutations consists of the (1234), (2314), (2341), (1243), (1324)
and (2413) orderings. These site orderings are listed in separate
columns in Table[T} together with the symmetry equivalent site or-
derings that are obtained by applying the symmetry operations of
the D, dihedral group. In Table|l} an S;,. = 3/2 has been utilized
(see Table in the Supplementary Material® for §j,. = 1/2).
The level of compression (measured by the Ls-norm of the eigen-

Table 1 Symmetry Non-Equivalent Site Orderings and Corresponding Ly-
Norms® for a 4-Site Rhombus Cluster with S}, = 3/2°

Sym. Elem. Symmetry Non-Equivalent Site Orderings
E 1234 2314 2341 1243 1324 2413
C(2) 3412 4132 4123 3421 3142 4231
Ch(x) 3214 2134 2143 3241 3124 2431
() 1432 4312 4321 1423 1342 4213
L4(Stor =0) 0.693 0.693 0.693 0.693 1.000 1.000
Li(Stor = 1) 0.564 0.564  0.447 0.447  0.702 0.561
Li(Stor = 3) 0.613 0.613 0.681 0.681 0.636 1.000
@ The largest Ls-norms are highlighted in bold and indicate the best site orderings.
b We use Jip = Jp3 = J3g = J14 = —1.789, Ji3 = —1.000, and Jog = —2.000.

vectors) as a function of different site orderings, for the energet-
ically lowest states with total spin Sio¢ = 0, 1,3, are also reported
in Table[l] for the geometry depicted in Fig.

The Ls-norm changes substantially as a function of the site or-
dering. For example, for Sior = 0, the ground-state wave func-
tion reaches its maximum compression, Ly = 1.00, for the (2413)
and the (1324) orderings, indicating (within the cumulatively spin
adapted basis of CSFs) a single reference wave function. On
the contrary, the other four site orderings feature a less com-
pact ground-state wave function with Ly = 0.69. This differ-
ence is to be attributed to the fact that for the (2413) ordering
{(Sz +S4)2,j? ] = 0, while for any of the other site orderings,

say (1243), [(Sl +Sz)27;ﬂ £0.

We also notice that while for (1324) and (2413) the commu-
tators of the Hamiltonian operator with the 2-site partial spin
operators vanish, i.e., [(Sl +S3)2,j?} = [(S2+§4)2,%ﬂ =0,
the commutator with the three-site partial spin operator does
not vanish, and it differs for the two site orderings, namely
{(Sl +8$; +Sz)2,9?} £ [(§2+S4+Sl)2,f?] #£0. It is precisely
this difference that makes L4 (1324) # L4(2413) for Stor = 1,2. It is
to be noted that there is no a single site ordering that is best suited
for all spin states. However, the (1324) and (2413) orderings are
similarly best suited for all spin states, if we consider averaging
the Ly-norms over all spin states.

Faraday Discussions
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While identical eigenvectors are to ge expec é%ﬁor pom% group

symmetry equivalent site orderings, Table|1|shows that eigenvec-
tors with identical L4-norm may also arise for symmetrically non-
equivalent site orderings. For example, for the triplet spin state,
Stot = 1, the six non-equivalent site orderings further group in four
sets. This argument applies irrespectively of the actual magnetic
coupling constants considered. This is an interesting observation,
indicating that additional symmetries exist that further reduce the
number of non-equivalent site orderings. Thus, in the search of an
optimal site ordering, instead of searching the entire permutation
space (N!=24) or in virtue of dihedral symmetry considerations,
searching the reduced (N!/h = 6) space, it should be possible to
further restrict the search over a yet smaller space. This space
can be identified by a recursive procedure that relates permuta-
tions of tuples to the dihedral symmetry of the cluster and will be
introduced in Section[3

2.2.2 The Kite Cluster

Squares and rhombi are special cases of the more general 4-site
kite clusters (Fig.[3), that will be discussed in the present section.
The dihedral group of the kite is D; (h = 2), which is identical to

G (2)

Fig. 3 The kite cluster with labeled sites and rotation axis, C2(z) (in
blue).

C, in non-standard orientation, where the C} axis of the D; group
is chosen along the z and not the x direction. The symmetrically
non-equivalent site permutations are thus N!/h = 12, as summa-
rized in Table[2] The (2413) site ordering is the one that leads to
maximum compression, because it is the only ordering for which
the commutation relation [(Sz +S4)2 I ] =0 is fulfilled. This
result is also graphically recognized (see Fig.[3) as the (24) pair
splits the kite into two isosceles triangles, (241) and (243). As al-
ready observed for the rhombus case, symmetry non-equivalent
site orderings further group on the basis of the L4-norm values,
so that for example for the Sior = 1 and Sior = 3 states the 12 sym-
metry non-equivalent site orderings lead to only 7 groups on the
basis of the Ly-norm value. In Section 3] the further reduction of
non-equivalent site permutations will be addressed and a recur-
sive graphical procedure discussed.

Moreover, in Table[l]and Table[2]we also observe that the num-
ber of groups further reduces to only two for the Sy, = O state.
The further reduction of distinct site orderings for the singlet spin

Journal Name, [year], [vol.], 1 |7
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Table 2 Symmetry Non-Equivalent Site Orderings and Corresponding L4-Norms? for the 4-Site Kite Cluster with S)oc Qq/é9_1039/D4FDOOO6lG
Sym. Elem. Symmetry Non-Equivalent Site Orderings
E 2314 3412 4132 1234 4123 1243 2341 3421 1324 3142 4231 2413
Co(z) 4312 3214 2134 1432 2143 1423 4321 3241 1342 3124 2431 4213
L4 (Stor =0) 0.693 0.693 0.693 0.693 0.693 0.693 0.693 0.693 1.000 1.000 1.000 1.000
Li(Stor =1) 0.420 0.420 0.549 0.549 0.554 0.554 0.507 0.507 0.676 0.676 0.661 0.799
L4 (Stor =3) 0.650 0.650 0.672 0.672 0.682 0.682 0.821 0.821 0.409 0.409 0.822 0.984
@ Ly-norm calculated from the CI eigenvectors for each site ordering.
b We use Jyp = J14 = —1.638, Jp3 = J34 = —0.894, Jj3 = —0.741, and Jo4 = —1.000.

states is discussed in detail in Section

3 Exploiting Permutation Symmetry via the Tree
Search Algorithm

In the previous sections it has been shown that different site or-
derings have an impact on the sparsity of the eigensolutions, as
measured by the Ly-norm of the many-body expansion, and that
commutators between cumulative partial spin and the Hamilto-
nian operators can be used as descriptors of such sparsity. The
number of non-equivalent site permutations can trivially be re-
duced by the order (k) of the point (or dihedral) group symmetry
of the considered cluster (N!/h). However, it has been observed
that site permutations not related by point group symmetry op-
erations may still be grouped together under the metric of the
Ls-norm. Thus, it should be possible to further reduce the space
of non-equivalent site permutations by exploiting additional in-
ternal symmetries of the Hamiltonian. A recursive graphical Tree
Search Algorithm is presented, that is based on the commutators
between cumulative partial spin and Hamiltonian operators, and
that is relevant to identify the unique non-equivalent site order-
ings under the L, metric, and thus to reduce the factorial scaling
of the permutation space.
A given site ordering, s, defines an array of commutators

o(s) = ({(sm)?%} 7 [(s<2>)2,,;4 [@(N))z%}?z;)

for an N-site cluster. Two arrays, </ (s) and </ (r) (where s and
t define two site permutations), are considered equivalent if it
is possible to establish equivalence between the commutators
within the two arrays, otherwise numerically if the L4-norms (and
thus the wave function structure) of the two site orderings, s and
t, are identical. The size of the permutation space can then be
reduced by excluding redundant site orderings leading to equiva-
lent commutator arrays.

The effect of the point group symmetry on the array of commu-
tators, <7 (s), as a whole, can be written as

(22)

where O represents a symmetry operation within the cluster’s
point group symmetry. One other symmetry we can exploit to
reduce the permutation space size is the commutativity of dot
products, i.e., §;-S ;= Si -Si. As in general the two symmetries are
not independent, i.e., a point group symmetry operation might al-
ready cover the dot product symmetry or vice versa, one should
consider the two symmetries simultaneously to span the entire

8 | Journal Name, [year], [vol.], 1

permutation space of unique site orderings.
In order to establish the «7(s) = </ (r) equivalence we proceed
recursively by applying point group symmetry to the commutators

~ 2,
{(S(")) ,%‘} , for n values increasingly larger, n = 1,2,3,..., and

so on. This is best done graphically, by means of a tree search
algorithm. Figure [4] shows the tree search algorithm applied to
the kite cluster.

The tree is formed by nodes and in each node a subset of sites
are marked with circles from which §( is built. For example, the
top-left node of Fig. |4] represents the (S] +S3)2 partial spin op-
erator (nodes 1 and 3 are marked with blue circles), from which
the [(Sl +S3)2 A ] commutator is evaluated. Each row of the

o 2
tree is characterized by a unique n value of the (S(")) partial
spin operator, starting with n = 2 for the top row. Level-1 nodes

are not considered as (S(1)>2 always commutes with any Heisen-
berg Hamiltonian operators, implying that any choice of level-1
is equally good. We refer to the top row entries as level-2 nodes.
Due to the commutativity of dot products, S4-Sp=85-S4, we do
not need to consider the relative ordering of the first two sites,
which are consequently marked in the same color.

Each row collects all non-equivalent cumulative partial spin op-
erators, on the basis of point-group symmetry considerations and
commutativity of dot products. For example, in the top row of
Fig. 4] the node labeled as (1 —3) is identical to (3 — 1) for com-
mutativity of the dot product S; -83 = S3-§, from which it also
follows that [(Sl +S3)2 ,%Z] = [(Sg +Sl)2,<}?}. Thus, only one
between (1 —3) and (3 — 1) is reported. Similarly, the (1 —2)
node is identical to (2 — 1) for commutativity, and identical to
(1—4) and (4 — 1) for point-group symmetry considerations. The
tree grows downwards to the next row (level 3). The (3(3))2
partial spin operators are derived from the level-2 by adding cir-
cles with level-specific colors (in Fig. [4] blue circles are utilized
for level-2 and green circles are utilized for the newly introduced
sites in level-3). Symmetry non-equivalent nodes lead to different
branches of the tree. The tree grows until the last level is reached
(level-N, for an N-site cluster). The level-N nodes span the per-
mutation space of unique site orderings. In the case of the kite
cluster (Fig. , there are four distinct nodes in level-2, and a total
of seven distinct nodes in level-3. Branching from level-3 nodes
to level-4 nodes is trivial and thus not shown in the figure. The
seven distinct orderings obtained from the tree search algorithm
match the ones identified in Table

The further reduction of distinct site orderings for singlet spin
states is explained in Section |5} and there its connection to the
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Fig. 4 Graphical representation (tree) of the cumulative partial spin operators and their commutation relation with A for a 4-site kite cluster. The
seven nodes at the bottom correspond to the seven non-equivalent site orderings identified in Tablelon the basis of the Ly-norm.

graphical tree search algorithm will also be made.

4 A Hairy Example: The Six-Site Cluster

In this section the tree search algorithm is applied to a larger 6-
site hexagonal cluster. The regular hexagon is in a Dg dihedral
group (h = 12), and, in absence of the tree search algorithm dis-
cussed in Section [3] it would be characterized by N!/h = 60 non-
equivalent site permutations. By the application of the tree search
algorithm we show that this number can further be reduced. The
complete tree is shown in Fig.

At the level-2 row we may identify 3 distinct pairs of sites, (12),
(13) and (14). Any other pair is identical to the three above either
for point group symmetry considerations or for the commutativ-
ity of the dot product. Thus, the three level-2 nodes indicates
that there are only 3 non-equivalent commutators of the type

A 2
(S(2>> I ] Following the tree search algorithm recursively

until level-5 reveals a total of 30 symmetry non-equivalent site
orderings, which represents the number of distinct permutations
under the Ly-norm metric (see Table[SL5]). The tree search algo-
rithm allows to reduce the permutation search from the initial 6!
number of possible site orderings to only 30 distinct site permu-
tations. The number of distinct site orderings reduces to only 12
when the permutation space of the singlet spin states is consid-
ered, a substantially smaller number. This further reduction will
be discussed in detail in Section[5

5 Higher Reversal Symmetry for Singlet Spin States

Table (thombus), Table (kite) and Table (regular
hexagon) show that the number of distinct site orderings on the
basis of the Ls-norm values further reduces in the case of singlet
spin states, Stot = 0, indicating that an additional symmetry exists
that could easily be exploited.

For singlet spin states, the Hamiltonian matrix elements for a
given site ordering, s, are identical to the ones obtained when the
reverse site ordering § is utilized

Hij(s) = H;(3)

g (23)

where |i) and |j) refer to the reversed CSFs of |i) and |j), respec-
tively, in which the orbital ordering is reversed and « and d spin
couplings flipped; for example, the reversed of |i) = |uduudd) is
|7) = |uuddud). A proof of Eq. ﬂls given in SectlonE 5.1 Thus, the
original and the reversed Hamiltonian matrices are identical, up

to permutation of rows and columns, and so are their L4 norms.
This symmetry is not present for spin states with Sior > 0, as it
would lead to unphysical negative cumulative spins. Therefore,
while the (1234) and (2314) site orderings in Table [1| have the
same L4 norms for any spin state in virtue of Eq.[21| and Eq.
for the singlet spin states also the (1234) and (4321) site orderings
have the same L, norms, precisely because they are the reverse or-
derings of each other. Similar arguments apply to the (1324) and
(4231) site orderings for the rhombus, as well as all the equivalent
orderings emerging for the singlet spin states of the kite example
(Table[2) and the regular hexagon (Table [SL5).

The reversal symmetry for singlet spin states can also be iden-
tified graphically in the tree search algorithm, by following the
tree from the bottom level to the top level and the ordering of
the holes instead of the circles. For example, in the case of the
kite (Fig. [4), the (2314) ordering arises from choosing the third
node in level-2 and the fourth node in level-3. Reading this path
in reverse ordering and following the holes (sites not marked by
circles) we would obtain the (4132) ordering. These two site or-
derings will be in the same group on the basis of the L4 norm for
the singlet spin states.

The equivalence between reverse site orderings identified for
singlet spin states explains the number of distinct site orderings
found for the Co(II);Er(II1) (OR) 4, cubane cluster studied in Refer-
ence [186. For the Co(II);Er(IlI) (OR) 4 cubane an exhaustive site
permutation search over all 4! site orderings for the lowest sin-
glet spin state has revealed only 3 distinct site orderings on the
basis of the weight of the dominant CSF (see Table 1 of Reference
186). The system is characterized by a C; point group symme-
try, and the magnetic interactions across the metal centers should
in first approximation be described by a 6J-Heisenberg Hamilto-
nian; thus, no permutation symmetry can be exploited in the tree
search algorithm, except the commutativity of the scalar products
between the first two chosen sites, that reduces the number of
non-equivalent site orderings to 4!/2. However, for the singlet
spin states, site orderings and their reverse are equivalent (halv-
ing the distinct site orderings), and commutativity can also be
applied to the reverse site orderings (another factor of 2 reduc-
tion). Thus, despite the low point group symmetry of the system,
the permutation space is substantially reduced from 4! to only 3,
on the ground of reversal symmetry and commutativity of the first
two scalar products.

Journal Name, [year], [vol.], 1 |9
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Fig. 5 Graphical representation (tree) of the cumulative partial spin operators and their commutation relation with J for a 6-site cluster in a regular
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hexagonal shape. The rows identify the levels corresponding to the {(Sm) %"} {(5(30 %} (S<4)) ,jf} and {(S@) %"} commutators.

The 30 nodes at the bottom level correspond to the non-equivalent site orderings identified in Table on the basis of the Ls-norm.

Table 3 Table of W, (Y;;d,di,Aby,by) taken from Reference 2001

RL RL RL
d'd Ab= -2 Ab=0 Ab=2
x=0 x=1 x=0 x=1 x=0 x=1 x=0 x=1 x=0 x=1
1 L b2 0 /i) (b+3) | -1)(b12) 0 RG] 0 B -
2 2b b2 b(b+1) b V2 2(b+1)
(b+1)(b+3) V2 2
12 0 T2 0 b2 0 RG] 0 — 0 1
(b—1)(b+1) 2 V2
21 0 A 0 — 0 =\ 552 0 — Y%= 0 1
22 L _ b 0 A/ (G+1)(0+3) 1 [ __b(b+3) 0 _ A/ =D(+1) 1 b+3
V2 2(b+2) b+2 B+ (+2) b V2 2(b+1)

@ Not allowed as it leads to |Ab| > 2.

Table 4 Table of reversed segments as a function of the original variables before applying the reversing transformation. The segment values are denoted
as VX(Yk;d;(dk,Abk,bk).

RL RL RL
dd Ab = -2 Ab=0 Ab=2
x=0 x=1 x=0 x=1 x=0 x=1 x=0 x=1 x=0 x=1
11 L b12 0 _ V/bbt2) 1 (b—-1)(b+2) 0 _V(b-2)b _ 1 b1
2 2% b+ b(b+1) b1 el 2(6+1)
2 3 \/b(b+2)
12 0 1 0 e T 0 -2 0 — 0 i
V2 2 /b(b+2)
21 0 1 0 — 0 -2 0 —v o= 0 o
22 il b 0 _ V/(bF2)(b+4) 1 _b(b+3) 0 _ [ b(b+2) 1 b+3
V2 20+2) 513 G+ (5+2) b1 2 2B+
@ Not allowed as it leads to |Ab| > 2
5.1 Proof of the Reversal Symmetry for Singlet States Heisenberg Hamiltonians can be expressed in terms of the ex-
change two-body spin-free excitation operators using the follow-
In the cases where Sj,. > 1/2, we may assume that there are mul- ing relation'18>
tiple parallel aligned electrons on each site (first Hund’s rule).
Thus, a general equation for the Heisenberg Hamiltonian opera- Sp .S ¢ = ; (epqqp + e!’;t/q) ’ (25)
tor reads as
A A A A where ¢, =é =E,E , the one-body spin-free exci-
Y oY Y 8,8 ¥ S8, (24) T Cappa = Cpaap = Zpatap Epp Y sp
Ps0  pePqc0 spep tation operator Ep; = Y5 | dpsd4c €Xcites an electron of spin ¢
P#P from the orbital ¢ to the orbital p, and the operators &;6 and dyo

. are the electron creation and annihilation operators, respectively.
where p (and p’) and ¢ run over electrons on site P and Q, respec- P P Y

tively. Jy > 1 has been introduced to guarantee ferromagnetic
on-site couplings. When there is only one electron on each site,

Eq.[24] reduces to Eq.

10 | Journal Name, [year], [vol.], 1
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Inserting Eq. [25]into Eq.[24]we obtain

.1 X 1\ Ju . 1
VW) <epqqp+ 5) sy <epp,p,p+ 5) ,
P>Q  pePqeQ p'peP
p#D

(26)
where we replace épp4q and é,,,,,,y with 1 because they are prod-
ucts of the number operators of each orbital that always accom-
modate a single electron. The constant terms are invariant under
the ordering reversal operation and will be ignored in the remain-
der of this document. The ordering reversal operation converts
the electron labels p and ¢ as

p—p=fN—p+1
27)
g—§=fN—q+1,

where f is the number of electrons on each site and N is the total
number of sites, thus fN is the total number of electrons (for sake
of simplicity it is assumed that all sites have the same number of
electrons f). In virtue of the reversal operation, the magnetic
coupling constant Jpg in the original site ordering is equal to Jp;
in the reversed ordering. Therefore, the equality
(il epgqp 17) = ({1pga5 ) » (28)
represents a sufficient condition to verify Eq.
In GUGA, the matrix elements over exchange type two-body
Operators, €,44p, are calculated as

<i|éPfMP ‘]> = Z H WX(Yk;d]l(dkaAbkabk)v
x€{0,1} kelg.p]

(29

where Y, refers to the segment type symbol; the segment value
di = 1 if the k-th coupling of the ket CSF, |j), is u (cumulatively
spin coupling with s = +1/2) and d) =2 if the coupling is d (cu-
mulatively spin coupling with s = —1/2); the dj variable refers to
the segment values of the bra CSF, |i); b} and by are the cumula-
tive spin values, 25 up to the k-level of the bra and ket functions,
respectively; and Aby, refers to the by — b/, value.2% In Eq. [29} all
segment values, Wy(Yy;d dy,Aby,by), over the k segments for the
same x value are multiplied, and the resulting products over the
two x values summed. For exchange type operators, é,4qp, only
RL, RL, and RL segment type symbols are to be considered out
of all possible combinations (see Tables VI of Reference [200). If
k = g, the segment type is RL (tail node), if k = p, the segment
type is RL (head node), and the other internal segments are of
the RL type.

While within the GUGA framework, CSFs and their step vec-
tors are generally represented graphically via Shavitt’s graphs,
for the special Heisenberg model case (where orbitals can only
be singly occupied by u and d spins) a slightly modified version
of the simpler genealogical branching diagrams can be utilized. In
Figure [6] two CSFs, |i) = |uududdud) and |j) = |uuuddudd), are
graphically represented by a dashed and a solid line, respectively.
The abscissa and the ordinate represent the & level and the corre-
sponding cumulative by value, respectively. In general, paths are
followed from the left to the right (direct paths). One advantage
of using genealogical branching diagrams over Shavitt graphs for
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CSFs with only unpaired electrons is %?Atlrc’eé%%/gD ‘é@%%"ﬁé%h from
right to left (reverse path, follow the k levels in Fig. @) is equiv-
alent to reversing the CSF, with decreasing segments becoming
increasing segments and vice versa. In any direct path, the node
on the right of each segment indicates the cumulative b, value,
while in any reverse path the node on the left of each segment
represents the cumulative by.

— |j) = |uuuddudd)
iy = |uududdud)

DA
8

<2

o+

[
N
w4+
o
2
o

Fig. 6 Genealogical branching diagram representing the |j) = |uuuddudd)
and |i) = |uududdud) CSFs. An ordering reversal operation of a CSF
can be viewed as reading the same CSF in the reverse path; thus, m =
|uuduuddd). The loop between the two CSFs in the range k € [3,7] is
filled in gray and indicates the segments contributing to the (i|é3773]/)
coupling element.

When using the genealogical branching diagrams, the seg-
ments contributing to a direct coupling element, (i|é,q4p,|j) are
also the contributing segments to the inverse coupling element,
(ilépqqp|j)- For example, in Fig. 6] the contributing segments of
(i|é73371j) (filled in gray) are also the contributing segments of
(ilé533717) = ({2662 |7), (Eq.[27] has been used for the orbital la-
bel inversion). Although the same segments are used for the ma-
trix element calculations of the original and the reversed two-
body operators, the segment values Wy (Yy;d;dy,Aby,by) become
Wx(Y;;déd;7 Aby, by), which may not necessarily be the same as the
segment values in the k indices. This behavior is shown with an
example in Table [5] and Table [6] where the (i|é3773|j) and the
(i|é2662 | /) are evaluated. The individual segment values for the
direct and reversed matrix elements are in general not the same,
however their products are and numerically proves Eq. A
more general proof will be offered in the following.

Instead of calculating the segment values using the original
GUGA Table[3|with variables (v, b, Ab, d’, d) of the reversed CSFs
and the reversed generator, say é,4¢2, one could first convert Ta-
ble[3]to a reversed table, where changes to the ¥/, b, Ab, d’, d are
applied (Table[d), and then use the variables of the original CSFs
and generator, say é3773, with segments value collected from the
reversed table. Table [4]is obtained by noting that if d; = 1 then
d; =2 (an up-spin in the direct branch is a down-spin in the re-
verse branch) and b; = by — 1; and vice versa, a dy = 2 is reversed
to dy = 1, and by = by + 1. Moreover the RL becomes RL and vice
versa. This strategy makes the evaluation of the W, values conve-
nient, as one can consistently use the d;dj, Aby, by variables of the
direct CSFs.
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Table 5 Evaluation of (i|é3773 |j) = (uududdud|és773 |uuuddudd) Hamilto-
nian matrix element using tabulated value reported in Table [3] (W) and
Table[d] (V1). Segment values outside of the range [3,7] are not defined
and marked with —. W, and Vj values are not reported as at least one
of the contributing factors vanishes.

kK b b A d& d  Wi(ddAbb) Vi(d'd,Ab,b)
11 1 0 1 1 — —
2 2 2 0 1 1 — —
3 1 3 2 2 1 MEUEH 1
2 V2
4 2 2 0 1 2 - /25 2
b(b+2) b(b+3)
> 1102 2 emes GG+
6 0 2 2 2 1 —V2/b —/ BT
1 0 1 2 1 Voet2)

8§ 0 O O 2 2 — —

v2a f2 14 V2
3 24 V23 "2

oYz A f2 V3L )2
N 3 2.3 1.3 2 3V3

Table 6 Evaluation of (i|éx62 | /) = (uduududd|éeey |uuduuddd) Hamilto-
nian matrix element using tabulated value reported in Table 3] Segment
values outside of the range [2,6] are not defined and marked with —. Wy
and Vj values are not reported as at least one of the contributing factors
vanishes.

(ile77314)

k b b Ab a d Wi (d'd,Ab,b)

1 1 1 0 1 1 —
(b—1)(b+1)

2 0 2 2 2 1 R

2

3 1 1 0 1 2 /503
(b—1)(b+2)

4 2 2 0 1 1 s

5 1 3 2 2 1 —V2/b

6 2 2 0 1 2 1

7 1 1 0 2 2 —

8 0 0 0 2 2 —

(o202 1) =432 =/ s /3 —F 1=y

Table [3] and Table [4] show that the only difference in the con-
tributions to W, for x = 0 is the sign of RL and RL segment val-
ues; however, as any Hamiltonian matrix elements always contain
only one RL and one RL segment, the final products are always
the same in sign and value for x = 0 terms. The tables also show
coinciding segment values for (d’,d) = (1,1) and (d’,d) = (2,2) for
the RL and the RL cases, as well as for the RL case with Ab = 0.

Next, we prove that

W] (RL; d]/(dk, Ab, b)
Wi (RL:d}dy., Ab, b)

Vl (RL; d]/(dk, Ab, b) ’
= =r(d,dy,Ab,b
Vi (RL: djdy, Ab,b) 7y Ab,D)

(30)
W1 (RL;d]/{dk,Ab,b)

Wi (RL; djdy, Ab,b)

Vi (RL; d}dy, Ab, b
_ Vi(RL KX ) V(e bb,)
Vl(RL;dkdk,Ab,b)

with an example. Let us consider the segment values,

12 | Journal Name, [year], [vol.], 1
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DOI: 10.1039/D4FD0006
W1 (RL;21,2,b) = , and Wi(RL;21,2,b) = —%=; their

ratio is % =—,/ W The V| counterpart of this
ratio (from Table is VIRL21.26) _

(b—1)(b+1)
b

Vi(RL2T2B) = (bil)z(bﬂ), which is the
same as the ratio for W;. The equivalence of ratios holds for all
d'd =12 and d'd = 21, and both for RL and RL segments types
(left as exercise for the motivated reader).

Thus, any RL and RL segments can always be expressed as

W] (RL; d]/(dk, Ab, b)

Wi (RL; d}dy,Ab,b) = ,
1 (RL; dydl ) r(djdy,Ab,b)

3D
and any segment product can always be written as simple product
of internal RL segments. In the evaluation of segment products,
and moving towards the proof of Eq. in virtue of Eq. [30] the
r(didy,Ab,b) can be omitted, as it takes identical values for direct
(W) and reversed (V) segment products.

The details discussed above can be utilized to demonstrate
Eq. by induction. The simplest possible loop types are con-
sidered as base case of the induction (see Fig. . In one case
(Fig. a loop-opening segment of the type d}dj = 12 is immedi-
ately closed by the loop-closing d; +19k+1 =21 segment, and in an-
other case (Fig. a loop-opening segment of the type d;dj = 21
is followed by the loop-closing dy , | dj = 12 segment. The undu-
lating lines outside the loops represent branches that are identical
in the two coupled CSFs, (i| €4y | /), outside the range of the gen-
erator.

The coupling element value of the loop in Fig. upon taking
advantage of Eq.[31|and omitting r(d}dy,Ab,b), is

Wi (RL; 12,—2,b— 1)W| (RL;21,0,b) = (ﬁ) ( b(bi2)>

2
T bbbt (32)

The V; counterpart of this loop (relying on tabulated values of
Table [4) lead to the same result
2 V2
b(b+2) b+1

-2 33
(b+1)\/b(b+2)

Vi(RL;12,~2,b—1)V{ (RL:21,0,b) = (—

A similar proof holds for the second loop type (Fig. [7D).

In the induction step, we insert a segment to the left of the clos-
ing segment; we may refer to the new segment as the n-segment,
making the step vector of size n+ 1 after insertion (see Fig.[7dand
Fig.[7d). Only segment insertions of the d'd = 11 and d'd = 22
type will be considered, that retain the Ab value of the level prior
to the insertion; other segment pairs lead either to closing loops
that is invalid as the node of the inserted segment is not con-
nected to the existing segment, or |Ab| > 2 which makes the cou-
pling element zero, equally proving W; =V} and thus Eq. As
an example, we show the induction step for a generic loop with
a Wi (RL;12,—2,by,) loop-opening m segment (see Fig. |7c|for ref-
erence). For a loop of length n, the b value of the loop-closing
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’

(a) (b)
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\ \o ) Y
11/22 21
m+n—2

Fig. 7 All possible loops that can appear in Heisenberg Hamiltonian matrices, represented via genealogical branching diagrams. The simplest loops
are (a) for d'd =12 and (b) for d'd = 21 loop openings. Arbitrary length-n loops are viewed as inserting n—2 segments of d'd = 11 and/or d'd =22
couplings in between the loop-opening and -closing segments: (c) a loop opened by d’'d = 12 segments and (d) a loop opened by d'd =21 segments.
Indices of the loop-opening segment (m) and the one before the loop-closing segment (m+n—2) are presented for (c) and (d). The b value of the
node marked in red is 8 (see Eq. . Undulating lines denote any possible couplings before and after the opening and closing segments.

segment is by, ,_1, and the following equation

Wi (RL;12,—2,by) - - Wy (RL; 21,0, 8 +1)

=Vi(RL;12,—2,by,)---V1(RL;21,0,8 +1), (34)

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

is assumed valid for a loop of size n as part of the induction pro-
cedure, where 8 = b,,,_2, represents the b value of the last seg-
ment before the closing one, which is thus increased by 1 unit in
the closing segment, (8 +1).

Open Access Article. Published on 23 april 2024. Downloaded on 2024-08-18 13:37:50.
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Inserting a d’'d = 11 segment leads to the following change to
the last factor of the left hand side of Eq.

Wi (RL;21,0,B+1) = — m -

2
WI(RL;l1,—2,ﬁ+1)W1(RL;21,0,[3+2):T{y (35)
Repeating the same procedure for V; gives
V2
Vi(RL;21,0,f+1) = ———— —
1 ( B+1) )
2(B+1)
Vi(RL;11,—2,B+ 1)V (RL;21,0,f +2) = —Y L 2 (36)
1( Wil ) RSN/

The change introduced by the insertion

Wi (RL; 11,2, B 4+ 1)W; (RL;21,0, +2)
Wi (RL:21,0,8+1)

~ Vi(RL;11,=2,B+ 1)Vi(RL;21,0,84+2) — [B+1 37)
- V1(RL;21,0,B+1) - B+3’

is identical for the left and right hand side of Eq. A similar
proof holds for the insertion of a d’d = 22 segment.

Equivalent conclusions are obtained by applying insertions to
to d'd = 21 loop-opening segments (Fig.[7d). Thus, the induction
completely proves Eq.|23|for any Heisenberg Hamiltonians within
the singlet spin symmetry.

6 Conclusions

Within cumulatively spin adapted many-body bases, site reorder-
ings considerably impact the sparsity of the Hamiltonian ma-
trix and its eigenfunctions, allowing methods that approximate
the full CI solutions, including the spin-adapted FCIQMC algo-
rithm, to converge rapidly to the exact solution. Specifically,
site permutations exist that lead to Hamiltonian matrices with
(quasi) unique block diagonal structure. Within each block,
the spin-adapted functions (often referred to as configuration
state functions, CSFs) have common expectation value of the

N2
cumulative partial spin over the first n sites, ((S(”)> ). The
unique block structure is explained by the commutation rela-

~ 2 . .
tion [(S(”)) ,¢ |; for some site orderings such commutator

vanishes, allowing the Hamiltonian and the cumulative partial
spin operators to share common eigensolutions (compatible ob-
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servables). The sparsity that follows vanishing commutators is
of broad impact. It applies to general systems with Sjoca > %;
it equally applies to homonuclear and heteronuclear systems; it
holds for PNTM clusters whose magnetic centers have same or
different local spins, as long as their interactions are dominantly
of exchange type. For vanishing commutators the numerical val-
ues of the magnetic coupling constants do not have any impact
on the sparsity of the Hamiltonian matrix, and sparsity persists
whether J,,; > 0 or J,; < 0.

Permutation and point group symmetries can be exploited such
that the number of non-equivalent site orderings, on the basis
of the L4-norm metric, is reduced as compared to the factorially
growing (N!) permutation space. A tree search algorithm could
be utilized to identify the distinct site orderings. The number of
distinct site orderings is substantially reduced for the singlet spin
states, on the basis of reversal symmetry and commutativity of
scalar products. The importance of this strategy resides on its
ability to reduce the space of distinct site orderings as compared
to the factorial growth of the permutation space with the number
of magnetic centers.

The equivalence between reverse site orderings for singlet spin
states further reduces the number of distinct site orderings, as
found for example for the Co(II);Er(Ill)(OR), cubane cluster
studied in Reference [186. In Reference |186| only three distinct
site orderings have been identified upon searching the 4! permu-
tation space of the singlet spin sector. The Co(II)Er(III) (OR),
system is characterized by a C; point group symmetry; thus, in
principle, no point-group symmetry arguments can be invoked
to justify the reduction of distinct site orderings. In the present
work, we demonstrated the reduction of distinct site orderings on
the ground of the reversal symmetry and commutativity of the
scalar products. Moreover, via the tree algorithm we have been
able to predict what these three orderings are.
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