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Gas hydrates have received considerable attention due to their important role in flow assurance for the
oil and gas industry, their extensive natural occurrence on Earth and extraterrestrial planets, and their
significant applications in sustainable technologies including but not limited to gas and energy storage,
gas separation, and water desalination. Given not only their inherent structural flexibility depending on
the type of guest gas molecules and formation conditions, but also the synthetic effects of a wide range
of chemical additives on their properties, these variabilities could be exploited to optimise the role of
gas hydrates. This includes increasing their industrial applications, understanding and utilising their role
in Nature, identifying potential methods for safely extracting natural gases stored in naturally occurring
hydrates within the Earth, and for developing green technologies. This review summarizes the different
properties of gas hydrates as well as their formation and dissociation kinetics and then reviews the fast-
growing literature reporting their role and applications in the aforementioned fields, mainly concentrating on
advances during the last decade. Challenges, limitations, and future perspectives of each field are briefly
discussed. The overall objective of this review is to provide readers with an extensive overview of gas
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1. Introduction

Gas hydrates are ice-like solid compounds that naturally form
(or can be formed) under certain conditions of pressure and
temperature (P-T) within a gas/water mixture where water
molecules hydrogen bond together forming a crystalline lattice
and are known as hydrates or clathrates (terms are used
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interchangeably). Gas hydrates are at the centre of research
within sustainable chemistry because of their innovative applica-
tions in a wide range of scientific and industrial contexts, such as
permanently storing CO, present in flue gases by forming gas
hydrates under oceans. The early era of gas hydrate-related
research was primarily dominated by flow assurance, minimising
hydrocarbon/gas pipeline blockage by hydrate formation.
However, in recent years the upsurge of research in the field
was stimulated by expanding the application of hydrates to
energy recovery, CO, capture and storage, gas separation, water
desalination, gas storage and transport, refrigeration, etc. More
recently the potential for methane escaping from hydrate-
bearing sediments and reaching the atmosphere has received
significant attention due to the high greenhouse warming
potential (GWP) of methane.

Recent experimental results backed by theoretical calculations
reveal significant potential not only to continue to improve flow
assurance but to dramatically increase the scope of gas hydrate-
based applications, which requires enabling technologies and
elucidation of a new master plan. This could not be achieved
without concerted collaborative effort among researchers from
different fields of chemistry, physics, geology, engineering, energy
industry, humanities, etc., standing as the key to unlocking the
contribution hydrates can make to a cleaner atmosphere and
support economic and sustainable development. This paper
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aims to complete the missing links between recent experimental
and theoretical efforts in chemistry, and highlight areas of
research that will require multi-disciplinary research and colla-
boration. The idea of clathrate-based applications in a diverse
range of sectors is of interest to all of the scientific community
and the GWP is a concern to society as a whole. In particular,
scientists studying low-carbon and unconventional energy have
much to benefit from advances in gas hydrate technologies
which can reduce costs and improve efficiencies within the
multibillion-dollar oil industry either through the substitution
of conventional fossil fuels or optimising extraction.

This paper reviews a substantial body of the theoretical,
experimental, and industrial research, advances and lessons in
the gas hydrate field, over the last decade. The review includes
the current state of the art understanding and advances in
technical developments, which are combined with expert per-
spectives and analyses. It is important to note that the purpose
of this review is not to analyse in detail every contribution
but to highlight the latest advancements, focus on the most
pressing issues preventing further understanding of clathrate
hydrates, and importantly realising the practical applications of
hydrate-based technologies for sustainable chemistry. The
review assembles the different gas hydrate-related subjects
relevant to sustainable chemistry, appealing to an even broader
community of readers. There are several excellent detailed
reviews on different subsections of gas hydrates in the existing
literature. Rather than duplicate these here, these reviews are
cited here to provide the reader with guidance about critical
information that is readily accessible elsewhere. Since the early
pioneering reviews and books on the fundamentals of gas
hydrates, the gas hydrate-community has driven significant
developments and advances in novel hydrate-based techno-
logies, seeking to improve their efficiencies and applicability.

Properties
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Building on these early studies, the evolving gas hydrate-based
applications have led to many advances in various fields,
allowing a wider range of scientific community to contribute
in this area of science.

As outlined in Fig. 1, this review summarizes different
properties of gas hydrates (Section 2) and their formation and
dissociation kinetics (Section 3) from chemistry and physics
perspectives. It then focuses on strategies for protection
and removal of hydrocarbon pipelines from gas hydrates
(Section 4), presence of natural gas hydrate reservoirs in the
earth and potential strategies for their extraction, as well as
extraterrestrial hydrates (Section 5). The role of gas hydrates in
CO, capture and storage (Section 6) is discussed next, followed
by a treatment of gas hydrates in sustainable development
(Section 7). Throughout the review, each subsection covers
the related challenges and directions for future investigations
of hydrate-based technologies.

2. Gas hydrates’ properties

The unique properties of gas hydrates under various conditions
of temperature and pressure have numerous practical applica-
tions in science and technology, and they also influence the
earth’s natural cycles. One example of these natural cycles is the
widespread escape of methane from natural reservoirs during
certain climate warming events in Earth’s history and the resulting
changes in ocean chemistry that may have been related to these
methane emission events." The ability to control the properties
of the clathrates using different methods and additives is of
great importance to many industrial processes, particularly
with regards to reducing the costs and controlling the kinetics
of formation/dissociation to maximise the applicability of gas
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Fig. 1 Graphical contents of the review.
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hydrate technologies. Even the multibillion-dollar international oil
industry is affected by the properties of gas hydrates, which can
form during hydrocarbon production and can plug production
facilities and transport pipelines, imposing billions of dollars of
financial loses every year. Finally, a fundamental understanding of
the properties of gas hydrates is vital to developing hydrate-based
technologies.

The properties for many types of gas hydrates are well-
known within the gas hydrate community, as demonstrated
by the many published review papers covering several aspects
of this diverse field. This section of the review is focused almost
exclusively on studies of gas hydrates properties from the last
decade. This section is structured in seven parts, with each part
introducing the important work that has provided insights into
the different aspects of gas-hydrate properties.

2.1. Hydrate structures

The past few decades have witnessed an impressive body of
experimental work devoted to gas hydrate structures and
chemistry. For instance, thanks to in situ techniques such as
X-ray diffraction (XRD),> Raman spectroscopy,” NMR,"* and
neutron diffraction® at very low temperatures and high pressures,
we are now able to look in real-time into different structures of
clathrates, identify cages occupancies, and their evolution over
time, providing a deeper insight into the kinetic behaviour of
these crystalline structures. The determination and understand-
ing of gas hydrate properties are imperative for controlling their
behaviour. For this purpose in situ techniques such as in situ
Raman spectroscopy and in situ X-ray diffraction supplemented
with calorimetry and/or NMR are helpful tools to determine
hydrate formation and dissociation behaviour as well as roles of
multiple molecules on structure and cage occupancy, especially
for gas hydrates formed from gas mixtures, and as such
determining the thermodynamic properties of the resulting
hydrate phase. Despite the fact that structures modelled from
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a range of spectroscopy techniques have gained ground in the
field, definitive structural solutions’ by single-crystal XRD
(SXRD) are needed mainly because atomic coordination and
geometric parameters usually remain uncovered by other spectro-
scopy methods and complexity emerging from disorder frame-
work is vague. However, the complexity of SXRD measurements
requiring restricted size gas-hydrate single crystals mean that
SXRD data for gas hydrates remain limited. This section of the
review is focused on the discovered structures with particular
emphasize on the structures that have not been discussed in
previous reviews. Based on guest/host interactions, hydrates are
classified into two main groups; (1) clathrate hydrates, crystals
with encaged hydrophobic guest molecules in which the inter-
action between hydrogen-bonded network of water molecules and
guest molecules is only by non-directional van der Waals
forces. (2) Semi-clathrate hydrates: crystals in which active part
of the guest particle molecule physically attach to the water
framework and help stabilise hydrophobic guest molecules
inside the hydrate lattice.

2.1.1. Clathrate hydrates

2.1.1.1. Natural gas hydrates. Natural gas hydrates are a
common class of clathrate hydrates that have hitherto been
identified in natural environments.® This class of well-known
hydrates is classified into three main types: structure I (sI),’
which usually forms by smaller guest molecules (0.4-0.55 nm)
and is the most abundant gas hydrate structure on the Earth;
structure II (sII),"® which usually forms by larger guest molecules
(0.6-0.7 nm) and structure H (sH)*'* (see Fig. 2), which usually
requires both small and large guest molecules for formation.
However, there are exceptions; for example, nitrogen, and
hydrogen can form sII hydrates, and some intermediate size
guest molecules could form both sI and sII depending on the
P-T conditions. All three classes consist of a hydrogen-bonded
water framework based primarily around a nearly spherical
structure unit of pentagonal dodecahedra (small cage) with
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Fig. 2 Three natural gas hydrate structures. (a) Structure |, (b) structure Il, and (c) structure H, and (d) five different host water cages. The solid lines
represent the unit-cell of each hydrate. All the crystal structures through the review were drawn using a visualization software called “Vesta 3".2°
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12 planar pentagonal faces (5'%)."> The difference between the
structures arises from the way these small cages link; cubic sI
unit cells comprise 46 water molecules forming two small cages
and six, ellipsoidal-shaped, tetracaidecahedral (large sI cages)
with 12 pentagonal and two hexagonal faces (5'67) that formed
by sharing vertices between 5> blocks without direct face
sharing; cubic sII unit cell comprises 136 water molecules
located in 16 small cages and 8 hexakaidecahedral (large sII
cages) with 12 pentagonal and four hexagonal faces (5'%6%)
that formed through sharing faces between small cavities;"?
sH unit cell with hexagonal symmetry comprises 34 water mole-
cules arranged in 3 small cavities, two irregular dodecahedron
4°5%° (medium sH cavities), and one icosahedron 5'%6® cage
(large sH cavities) that is isostructural the hexagonal clathrasil
dodecasil-IH."* The occupancy of each structure depends on the
number of cages and each cage could accommodate one or more
(such as nitrogen or hydrogen hydrates) guest molecules. The
large cages in all structures are reported to commonly have
around 100% occupancy,’ but that is not a requirement for
the stabilization of the crystals.'® However, the occupancy of
smaller cages strongly depends on the type of guest molecules
and could be very low or zero in some cases. For example, in sI
hydrates, the smaller guest molecules can fill either small or large
cavities, whereas, larger guest molecules can only occupy large
cages. The P-T of formation conditions strongly affect the
occupancy, and as such a stable clathrate could have a range
of nonstoichiometric compositions. It has also been reported
that under suitable conditions transitions between structures
are possible. For example, sI hydrate could transition to sII or
sH, upon compression’”*® or addition of appropriate guest
molecules.'® More details about the common structures can be
found here,'*1320-24

2.1.1.2. Other structures. The applications of gas hydrates in
diverse fields motivate scientists to investigate different hydrate
structures. One of the early examples is research by Udachin
and Ripmeester,”® which discovered 1.67 choline hydroxide-
tetra-n-propylammonium fluoride-30.33H,0, whose structure
is characterized by stacks of sH and sII hydrate and which
exhibits hydrophobic and hydrophilic (see Section 2.1.2) modes
of hydration by guest molecules. Another example is the
discovery of trigonal sT hydrate (with dimethyl ether as the guest
gas), which lacks polyhedral (5'%) cages and instead consists of
unit cells with 12 small cages (4°5°6") and three types of large
cages with different ratios; 12(5'%6°); 12(5'%6%); 24(4'5'°6%).>”

Traditionally*®>° it was believed that in the pressure range
1-2 GPa, methane liberates from the clathrates and could not
be stable at extreme conditions. However, following studies on
Titan, the giant moon of Saturn, Voyager 1°° located a deep
atmosphere made-up of nitrogen with considerable amounts of
methane, which may be as high as 21% at the surface,*" and
requires a mechanism to keep methane intact over millennia
against photochemical processes. Loveday et al.**> was motivated
by this finding to investigate methane hydrate above 2 GPa using
X-ray and neutron diffraction. They reported methane can form a
new hydrate phase (MH-III, known as filled ice®* with an unusual
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combination of 4-, 6-, and 8-membered water molecules’ rings)
at higher pressures with a higher gas to water ratio and struc-
tural transition at about 1-2 GPa, remaining stable at least up to
10 GPa. Considering the reversibility of MH-I to MH-II and MH-II
to MH-III, the authors suggested that the source of Titan’s
atmospheric methane is a layer of MH-I that is been formed
because of gravitational differentiation from core methane in
MH-III at the end of accretion and producing methane via
convective processes. This discovery has prompted considerable
research into clathrate hydrates at high pressure to investigate
their existence in extraterrestrial settings.>*™** Recently, it has
been computationally supported that methane could form MH-IV
(with 6-membered rings, similar to the ordinary ice (ice Th))**** at
even higher pressures, which has been confirmed through experi-
mental research®” by Raman spectroscopy measurements using
diamond anvil cells. The authors reported that MH-IV (methane
to water ratio ~ 0.5) forms beyond 40 GPa and is stable up to
150 GPa at room temperature. The behaviour of methane hydrate
beyond 150 GPa and the effect of temperature at pressures over
greater than 10 GPa needs to be investigated through future
research (see Fig. 3).

~ 150 GPa

~ 40 GPa

Unknown
Unknown

~ 1.8 GPa

Pressure (GPa)

MH-1I

~ 0.9 GPa

MH-I (sl)

~ 0.3 GPa

No Hydrate

v

~295 K

Temperature (K)

Fig. 3 Structural transition of methane hydrate upon compression up to
150 GPa at room temperature. MH-I is the known sl hydrate. MH-II is
similar to sH hydrate and may be closely related to it. However, there are
challenging reports about whether MH-II has sH structure or not.32
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There are also studies that show that unusual clathrates of
other gases could also form under specific conditions. It has
been found that helium molecules could refill empty neon
clathrates (ice XVI) and could enter into ice Th and ice II
structures.’>*° Similarly, it has been shown that hydrogen also could
fill ice by forming a structure similar to ice Ic.*” Another study
suggested that Ne and O, could fill ice XVIL*® These findings suggest
that, by choosing appropriate sized guest molecules and suitable P-T
conditions, it is possible to fill open, low density phases of ice.*® Still,
significant further research will be required to characterize clathrates
under extreme conditions for a wide range of compositions,
temperatures, and pressures. Promising technologies for hydrate
research could be advanced further using the developments from a
variety of research fields that can contribute to investigating the
existence of clathrates at unusual/extreme conditions.

2.1.2. Semi-clathrate hydrates

2.1.2.1. The quaternary ammonium salt hydrates. These class
of lesser-known clathrate hydrates, namely the semi-clathrate
hydrates of ammonium/phosphonium salts, received little
attention after their initial description in 1940.*° However, after
examples of the separation®® and storage®' of various gases
using these types of clathrates were presented, interest in semi-
clathrate hydrates increased exponentially. One of the key
features of these crystals compared to other classes of clathrate
hydrates (sI, sII, and H) is their thermal stability at atmospheric
pressure. For example, solutions of tetra-n-butylammonium
fluoride under atmospheric conditions form hydrates with a
melting point of 310 K.*° The higher thermal stability of semi-
clathrate compared to other hydrates is attributed to their
structural variety, including, but not limited to, the ways in
which the dodecahedra associate. This association can be either
by sharing faces or by bonding among vertices to build a range of
interstitial multifaceted polyhedrals for hosting guest gas mole-
cules or the ion pairs without immensely disordering the
hydrogen-bonding pattern of the water framework.>>

In contrast to clathrate hydrates in which gas molecules are
encaged with stability provided to cavities by van der Waals
interactions, guest molecules in semi-clathrates are both
physically attached to the water network by hydrogen bonding
and occupy cages. The walls of some of these cages are partially
removed or replaced with the active part of the guest particle.>*”*
In the case of tetra-n-butylammonium bromide (TBAB) (see Fig. 4)
salt semi-clathrates, for example, negatively charged anions (Br )
construct a cage structure with the water molecules. This
behaviour makes this class of hydrates ionic rather than mole-
cular inclusion compounds. Hydrophobic cations, however,
takes a cage filling role by disordering water molecules and
occupying the centre of four cages (namely two tetrakaidecahedra
and two pentakaidecahedra)® without H-bonding with the
neighbouring water molecules (i.e. hydrophobic inclusion).
This, in turn, leads to shaping of a merged cavity composed
of several simple cavities, each of which has a hydrocarbon
radical that connects to others by water molecules missing
from the vertices.”® All the dodecahedral cages are empty and
are potential vacancies to be occupied by another guest mole-
cules. Non-volatility in case of exposure to gases such as H, and

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 (a) The structure of TBAB hydrate ((C4Ho)4N*-Br -38H,0). The
solid lines represent the unit-cell of each hydrate. (b) Magnification of
TBAB hydrate structure near tetra-n-butylammonium cation. The blue
shaded dodecahedral cages are empty, and as such are candidates for
encaging small molecules.

CO,, in addition to typical stability of these clathrates at ambient
conditions, is a critical feature in the use of these salts in gas
storage, as purity of gas phase is not affected after dissociation
of semi-clathrate hydrates. Application of these hydrates in
different sectors is reviewed below in relevant chapters.

2.1.2.2. The alkylamine hydrates. Amines are organic compounds
consisting of a basic N atom with a lone pair of electrons in
which one or more of the H atoms is replaced with an aryl or
alkyl group, making it different from ammonia. Such amines
and amine-related compounds are relevant in a variety of
the broad range of anthropogenic uses, including industrial,
pharmaceutical, scientific and commercial contexts.”® Of parti-
cular importance are the associated risk for release of these
compounds into the aquatic system®”*® and potential for amine-
based CO, capture.’>®® Therefore, it is important to understand
the processes related to amines in the aquatic environment and
the formation of alkylamine hydrate in the presence of water and
alkylamines is a key process.

The alkylamine hydrates are another class of little-known
stoichiometric semi-clathrate hydrates, except for tert-butylamine,>
which is a clathrate hydrate (see Section 2.1.1). In semi-clathrate
alkylamine hydrates, the amine molecule is hydrogen-bonded to
the water network, retaining the cage like structure. In contrast to
clathrate hydrates, every amine has shown to create different and
more complex water framework structures with greater distortions
from equal edges and tetrahedral coordination at the vertices
compared to that of clathrate hydrates. In the amine hydrate
structures, similar to the quaternary ammonium salt hydrates,
alkyl chains take the cage-filling role, while the functional
group is hydrogen bonded with water latticework.®

Since the early studies of the existence of amine hydrates by
Pickering were disclosed in 1893, several workers discovered
different physical/chemical properties of these hydrates.®
However, this class of hydrates sees little attention by scientists
and there have been limited works on this topic in the last
decade. In 2009, Ogata et al.® detailed the cage occupancy
and phase equilibrium relations of mixed H,-trimethylamine
clathrates under varying conditions. Following this, several workers
investigated various amine hydrate structure transitions when

Chem. Soc. Rev., 2020, 49, 5225-5309 | 5229
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exposed to pressurised CH,**®” or H,°® providing significant
information about guest-host interactions.

2.1.3. Molecular simulations. In recent decades, molecular
simulation has contributed a great deal towards elucidating
microscopic mechanisms of clathrate-hydrate behaviour,
from equilibrium, structural and dynamical properties of the
crystalline state, to time-dependent rate phenomena, such as
nucleation, crystallisation and dissociation in heterogeneous
environments (such as in marine silica). A comprehensive
review on hydrate molecular simulation was presented recently
by English & MacElroy,* building upon earlier work by Barnes &
Sum.”® The structures of various polymorphs of hydrate have
been described earlier in the above sections. However, an
important new development of insights into hydrate structure
(and thermodynamics), to which molecular simulation has con-
tributed over the years, lies in the nature of apparent long-term
stability of the empty hydrate lattice. Counter to intuition, this
lattice environment is a highly hydrophobic one: there are no
available, or ‘dangling’, hydrogen bonds with which a guest
molecule can form strong, sustained hydrogen bonds, meaning
that weaker, transient bonds are formed, often between guest-
molecule protons ‘flitting’ to lattice oxygen atoms with rotations.
This phenomenon was modelled by English and Tse for H,S
hydrates with ab initio molecular-dynamics (AIMD) simulations.”*
In any event, Falenty et al. have determined experimentally that
the empty neon hydrate lattice is stable;”” very recently, Krishnan
et al. have replicated this neon-release process using long MD
simulations, also finding evidence of apparent empty-lattice
stability.”® This follows earlier MD studies of Tse et al,”
Wallgvist’®> and English and co-workers”®”® suggesting stability
over shorter (sub-nanosecond) simulation durations. For a
more exhaustive examination of molecular-simulation studies
in clathrates, the reader is referred to the existing comprehensive
reviews on molecular simulations.®®”%”°

An important, imaginative, and very recent new general
trend in hydrate molecular simulation lies in assessing
the effects of externally-applied magnetic fields on hydrates
by non-equilibrium molecular dynamics (NEMD), including
their kinetic properties — which may have profound geophysical
implications.®® English and Allen performed such NEMD simu-
lation to show that magnetic fields, including their direction
reversals, have important effects on gas-release dynamics from
methane hydrates. For a field-polarity switch, there is a sudden
increase in the gas release, from effects on rotating water
molecules in the hydrate cages due to shifting Lorentz forces.*
Intriguingly, and boldly, it was conjectured that these NEMD-
based findings, especially involving switches in field direction,
may have a causal link with superchron-related swaps in the
Earth’s magnetic-field polarity leading to increased methane
release into the geosphere.®

2.2. Thermodynamics

As we learned from the previous chapter, gas hydrates are
composed of two different kinds of molecules, the host mole-
cules (water), forming the cavities and the guest molecules
which are encased into the cavities and stabilize them.

5230 | Chem. Soc. Rev., 2020, 49, 5225-5309
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Temperature (K)

Fig. 5 Hydrate stability zones of CO,, Np, CHy, flue gas (14.6% CO, and
85.4% N,) and mixtures of flue gas with CH,4 (dotted lines) as a function of
temperature. Increasing the pressure of the system above the predicated
phase boundaries could initiate the hydrate formation. Adding gases with
higher hydrate stability pressure zones to gases with lower hydrate stability
pressure zones, shifts the system phase boundaries to the left (adapted
with permission from Hassanpouryouzband et al.®t Copyright 2019
Springer Nature).

Depending on the P-T conditions (see Fig. 5), these components
coexist in different phases at equilibrium state. Therefore,
development of an efficient thermodynamic route is of signifi-
cant importance for determining hydrate formation conditions
and hydrate compositions of different systems and has a key role
in contributing to the varied gas hydrate related industries. For
instance, predicting the optimum amount of thermodynamic
inhibitor that needs to be added to the gas production stream
to stop pipeline blockage by hydrate formation would have
been extremely costly without using thermodynamic models.
Accordingly, scientific efforts in this area have led to significant
advances in thermodynamic modelling.

2.2.1. Phase equilibria. To achieve an equilibrium state,
pressure and temperature have to be the same throughout the
complete system (i.e. liquid, gas, hydrate phases); in addition,
the chemical potential of each component has to be the same
in all coexisting phases. After initial correlations based on
empirical results,*>® a first approach describing and predicting
the phase behaviour of gas hydrates was presented by van der
Waals and Platteeuw® in 1959, treating gas hydrates as dilute
solid solutions with the water molecules as solvents and the
guest molecules as solutes. This was based on van der Waals’
previous work on clathrate structures.®> They modelled hydrate
formation as similar to localized adsorption in three-dimensions
with the assumption that all processes are ideal (Langmuir
model for gas adsorption). Although their proposed formulation
was for a single encapsulated component in a hydrate lattice by
applying ordinary partition functions, it is straightforward to
extend this formulation to more complex systems. Their model
is based on some prerequisites and assumptions, including
the single occupancy of cavities, no guest-guest interactions,
no arrangement of cavities in the water lattice and no lattice
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distortions due to guest molecules. In reality, these conditions
are often not fulfilled and may cause errors®® in the predicted
results. With regard to the assessment of the interactions
between the host and guest molecules and their potential energy,
the authors used the theory of Lennard-Jones and Devonshire.?”
Since this approach did not consider some effects of the size and
shape of the guest molecule, e.g. the distortion of the cavity as a
result of the encasement of large, linear molecules such as
ethane or CO,, McKoy and Sinanoglu®® suggested the Kihara
potential as a potentially better alternative. In 1972, Parish
et al.®® extended the van der Waals and Platteeuw model to
complex gas systems using Kihara cell parameters. They tuned
their parameters using empirical results in the presence of ice
and hydrate and validated their iterative scheme based model by
comparing the simulation results with the experimental results
of other researchers such as HafeMann and Miller”® for both sl
and slI of cyclopropane. Following this, additional attempts have
been made to further modify®" van der Waals and Platteeuw and
measure®® Kihara cell parameters for different compositions.

In 1988, Englezos and Bishnoi®® proposed the use of Gibbs
minimization of closed system methods to calculate the hydrate
fraction and composition in the same way Michelsen®* had done
for multiphase flash for liquids and vapour systems. They used
the van der Waals and Platteeuw model to calculate the chemical
potential of water in hydrate in a similar way to the previously
mentioned model. This model was then extended®>®® to multi-
hydrate former systems and computationally strengthened.
Ballard and Sloan®” proposed another adaptation of general
hydrate flash based on Gibbs minimization considering
non-ideality about effect of gas adsorption on lattice size. The
Gibbs-minimization method has been further improved by
such modifications as increasing the speed and robustness of
calculations,’® ™ implementing different equations of states
and activity coefficient models for involving passes,'*™® and
etc.51991 to address further limitations of the method. As
discussed in the previous section, the presence of ammonium/
phosphonium salts also determines the thermodynamic behaviour
of the resulting hydrate phase. After the initial neural network
approach,''” the first theoretical approach for modelling phase
behaviour of semi clathrates was introduced using the statistical
associating fluid theory with variable range for electrolytes
(SAFT-VRE)"" equation of state for the thermodynamic properties
of the liquid phase and (vdW-P) theory combined with the new
model for salt hydrates and applied the Gibbs-minimization
method under stoichiometric constraints. Following this approach,
many workers adjusted tuning parameters of SAFT-VRE for various
semi clathrate compositions."**™*® Other approaches such as
electrolyte non-random two-liquid (e-NRTL),""” modified Patel-Teja
(MPT) EOS™*® and electrolyte Cubic-Plus-Association (e-CPA)"*°
were also later applied for predicting semi clathrates phase
equilibria.

In addition to the Gibbs minimization model based on
modified van der Waals and Platteeuw (VDW-P), Chen and Guo
followed a different approach to predict hydrate dissociation con-
ditions that consists of a new two-step model; (1) quasi-chemical
reaction for formation of basic hydrate and (2) adsorption of
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guest molecules. They considered local stability as well as kinetic
mechanisms, which is absent in VDW-P theory."*° In addition to
their achievement in extended testing, they obtained more
accurate results than VDW-P model in some cases for tempera-
ture between 259 & 304 K. However, this model lacks required
accuracy over a wide range of pressure, temperature and com-
positions due to several factors: firstly the authors assumed that
all large cavities were completely occupied, which is not in
agreement with empirical data and secondly, they tuned the
model parameters with the Antoine equation based fugacity
functions that proved inaccurate for vapour pressures outside
of tuned conditions."*" To address these problems, Klauda and
Sandler*?* in 2000, applied Quantum mechanical calculations
to reduce the number of fitted parameters and remove the
assumption of a constant crystal lattice for various guests inside
a structure. They also used the quasi-polynomial, QL1'>* instead
of the Antoine equation for calculation of Langmuir constants,
which is accurate beyond the tuned temperature range.
Subsequently, they applied their method to single and multi-
hydrate former gas mixtures.’** Similar to Gibbs minimization
method, there were further modifications on the Chen and Guo
method to increase the accuracy and remove the limitations."*>™"*”
Alongside the aforementioned approaches, various neural net-
work algorithms have been reported for phase equilibria of gas
hydrates.">**3°

In summary, there have been significant advances in pre-
dicting hydrate phase equilibria modelling, and there enable
us to predict hydrate stability zones, hydrate fractions and
compositions plus other derived thermodynamic properties.
Despite the major progress in experimental and simulation
studies, a series of challenges remain unresolved which offer
the opportunity to explore new directions from a thermo-
dynamic modelling perspective. Firstly, current thermodynamic
models work reasonably well for those hydrate systems with no
or low concentrations of inhibitor; however, when high concen-
trations of inhibitors were used the errors in prediction increase
significantly. Secondly, there are significant errors when calcu-
lating hydrate equilibria at high pressures or with very small
guest molecules. Thirdly, for systems containing CO, or H,S in
the presence of second guest molecules, uncertainties increase
significantly.®®

2.2.2. Molecular simulations. Building upon this finding
of stability of the empty hydrate lattice (see Section 2.1.3), in
contrast to other thermodynamic models, such as that of van
der Waals and Platteuw, there have been recent advances in the
thermodynamic understanding of guest-guest interactions in
hydrates, led by molecular simulation. Nowhere is this more
apparent than in the field of hydrogen hydrates, where hydrogen
molecules are capable of multiple cage occupancies and hopping
between cages. As a case in point, Burnham et al'*"*? and
Cendagorta et al.’®® have carried out very detailed analyses of
inter-cage hopping of hydrogen molecules in hydrogen-bearing
hydrates, using path-integral sampling to estimate cage-hopping
free-energy barriers and taking into account the critical nuclear
quantum effects. In addition, Burnham et al. have fitted a bespoke
force-field from force-matching of ab initio MD of hydrogen
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hydrates with high-quality functionals,"** finding that such
potentials are important in being able to characterize more
sensitively and accurately guest-guest and guest-water inter-
actions and capture inter-cage hopping free-energy barriers
more accurately.

More broadly, in terms of recent sophisticated thermody-
namics modelling of cage occupancies, which depends strongly
on modelling the subtleties of guest-guest and guest-lattice
interactions, Brumby et al. have made impressive progress with
Monte Carlo simulations of hydrogen hydrates in the isothermal-
isobaric Gibbs ensemble, performing a detailed analysis of
cage-occupation distributions.'*® In accordance with previous
experimental and theoretical studies, they found evidence of
very limited double occupancy of small cages, where approxi-
mately 0.1% of small cages were doubly occupied at 300 MPa
between 225 and 250 K."*

Outside of hydrogen hydrates, where nuclear quantum
effects can often be very important, as just discussed, molecular
simulation has of course expanded our insights into thermo-
dynamics for other guests. Here, the work of Kvamme et al.»*® is
important in highlighting how residual thermodynamics and
chemical potentials of a variety of guests (with particular focus
on methane and CO,, motivated by gas production in marine-
hydrate-sediment contexts) and the water-lattice framework can
be evaluated from (biased) molecular simulation. This offers
the possibility of using molecular simulation as an important
prototyping tool for evaluating thermodynamic hydrate-formation
and dissociation propensities in a variety of marine-sediment and
pipeline settings.

2.3. Thermal properties

A detailed understanding of the underlying mechanisms
governing the thermal behaviour of clathrate hydrates, together
with accessibility to accurate and reliable thermal property data,
makes it possible to enhance simulation scenarios designed to
achieve long-term resource recovery and determine the impact
of hydrates on climate change."® The response of clathrate
hydrates to a changing thermal environment is governed by
the thermal conductivity, thermal diffusivity, specific heat, and
enthalpy of formation/dissociation."*®

2.3.1. Thermal properties of pure clathrate hydrates

2.3.1.1. Thermal conductivity. Distinguished from other mole-
cular crystals, clathrate hydrates generally exhibit an anomalous
thermal behaviour in natural systems with a glass-like temperature
dependence (positive slope) resembling amorphous solids."** 4>
Hydrates have been observed to show a glass-like temperature
dependence in thermal conductivity above the Debye temperature,
similar to some clathrate-like compounds,'**™** and a crystal-like
behaviour below."**'*” This intriguing behaviour is attributed
to the interactions between localized low-frequency vibrations
of the guest molecules with the acoustic phonons of the host
lattice."*®°° Pressure dependence of the thermal conductivity
has also been studied by researchers, suggesting a weak direct
proportionality.”>” "> Despite similarities on the molecular
level and the other physical properties, thermal conductivity
of clathrates hydrates has been found to be markedly lower
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than ice Ih.>*1637165

Such behaviour arises also from larger
anharmonicities in the intermolecular interactions when com-
pared with ice.**® Thermal conductivity measurements recently
conducted on some semi-clathrate hydrates, however, revealed
a weak negative temperature dependence, demonstrating the
crystal heat transmission characteristics in semi-clathrate
hydrates."**'¢”

Transient hot-wire
162,164,167,170-174

140,158,159,161,166,168,169 21 4 trancient plane

source techniques are the most widely used
methods for measurement of the thermal conductivity of
clathrate hydrates. Some other techniques, such as the steady-
state potentiometric method'*"**®**”'7> and guarded hot-plate
method,'®*'7® are also sometimes used to measure the thermal
conductivity of hydrates. The main challenge associated with
the laboratory measurement of the gas hydrates thermal con-
ductivity is that the gas hydrate samples are usually porous and
have free water/ice and gas which could impact the quality of the
experimental data as the measured thermal conductivity includes
the thermal contact resistance (TCR) due to the unavoidable
imperfect contact.'*®'4716* Recently, however, an experimental
system was introduced using the modified freestanding 3
method which is able to reconstruct the intrinsic thermal proper-
ties (thermal conductivity and diffusivity) of clathrate hydrates."””

2.3.1.2. Thermal diffusivity. While thermal conductivity is a
measure of the ability of a material to conduct heat thermal
diffusivity is the thermal inertia of the material.'®* A new
experimental configuration based on the approximation
solution of the Navier-Stokes heat equation was first developed
by Turner et al. in order to measure the thermal diffusivity of
clathrate hydrates.'”®'”® Waite et al. used the infinite line
source formulation of Carslaw and Jaeger for simultaneous
determination of thermal conductivity and thermal diffusivity
using the transient hot-wire method."®""'®® Transient place source
technique has also used to measure the thermal diffusivity of
methane hydrate.'®*'73

2.3.1.3. Calorimetric studies. The heat stored in or extracted
from a material due to a temperature change can be quantified
by the heat capacity.*® Clathrate hydrates heat capacity data can
provide some information about the motion of encaged guest
molecules or reordering of the guest and host.'®*° Enthalpy data is
also necessary as a key thermal property for a realistic evaluation
of the recovery schemes proposed for exploitation of natural gas
hydrate-bearing sediments.'®" Several experimental studies have
been conducted to measure the heat capacity**>**°™*% and
enthalpies of formation/dissociation!8:181,183,184,186,188,190-198
of clathrate hydrates, the majority of which use the heat-flow
calorimeter' 8% 181,183,184,186,191,192,194 a4 differential-scanning
Calorimeter‘188,190,193,195,197—199

Experimental measurement of gas hydrate heat capacity is
always associated with two major challenges: (1) due to strong
dependence of the vapour pressure of gas hydrates on the
temperature, increasing the system temperature results in dis-
sociation of the hydrates and consequently renders the apparent
heat capacity much higher than the actual value; (2) the presence
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of free hydrate former species (especially free water) could
greatly influence the measured heat capacity of the hydrate.'®®
Enthalpies of formation/dissociation are also determined indirectly
by using the P-T diagram of the system and Clapeyron equation
or its Calussius-Clapeyron approximation.'*®**° However, this
method has limited application when used for semi-clathrate
hydrates.'”>**" A detailed overview of the calculation of the dis-
sociation enthalpy of methane hydrates can be found elsewhere.**>

2.3.1.4. Perspectives on molecular modelling. Underlying
mechanisms of the heat conduction in clathrate hydrates can
now be explored via molecular simulation thanks to recent
advances in computational power. In molecular simulation,
thermal conductivity can be estimated by both equilibrium
and non-equilibrium Molecular Dynamics (MD)*° (see Fig. 6).
A review on the contribution of molecular simulations to our
detailed theoretical understanding of mechanisms of thermal
conduction in clathrate hydrates can be found elsewhere.®**”
Recently, MD was employed to further investigate the thermal
behaviour of the clathrate hydrates,?**72%¢ particularly to eval-
uate the influence of guest occupancy ratios on the thermal
performance of gas hydrates, suggesting an improved thermal
conduction by the inclusion of more guest molecules in the
cage.””’ 2% The MD approach was also utilised to study the
calorimetric properties of clathrate hydrates including the heat
capacity”'® and endothermic dissociation process of clathrate
hydrates.>>>"'?"* However, the dependence of the experi-
mental results on the samples’ nature and quality together
with the quality of the potential models used in molecular
simulation and the system size and electrostatics render diffi-
cult a direct and quantitative comparison of theoretical and
experimental values.®® This clearly makes it necessary to seek
novel and more suitable macroscopic experimental techniques

-
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to minimize the effect of the external/internal factors (confining
pressure, temperature, residual water, gas or ice, presence of
micropores,. . .) to obtain a well-defined sample whose thermal
properties reflect those of pure hydrates.>'* Apart from challenges
encountered in macroscale studies, there are still a number of
technical issues that need to be addressed associated with the
molecular modelling required to identify key microscopic
mechanisms controlling the thermal properties. This would lead
to improved reproducibility of the thermal properties already
measured precisely in the laboratory. Integrating the experimental
and theoretical studies would enable us to elucidate the thermal
behaviour of hydrates at different conditions, especially those
difficult or even impossible to achieve experimentally such as
extremely low temperature or high pressure conditions. Such
integration can be of particular interest when investigating the
evolution of the thermal properties of hydrates during various
processes such as formation and dissociation.>"® The importance
of the thermal properties in various hydrate-based applications
such as CCS, hydrogen storage, desalination and gas separation,
and the key role of the molecular-level mechanisms in controlling
the thermal conductivity of hydrates necessitate further experi-
mental studies integrated with molecular simulations to shed
light on the thermal behaviour of hydrates.

2.3.2. Thermal properties of hydrate-bearing sediments (HBS).
Thermal properties of hydrate-bearing sediments (HBS) provide
necessary inputs for evaluating gas production from natural gas
hydrate reservoirs, seafloor stability of oceanic sediments, global
climate change, and submarine slide formation.”’”*'® Reliable
thermal properties are necessary when assessing the response of
HBS to exploitation operations and environmental changes.?**2*!
Several experimental studies have been conducted to measure
the thermal properties of HBS, particularly their effective
thermal conductivity. Accurate measurement/prediction of the
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Fig. 6 Molecular-dynamics simulation of thermal conduction in methane hydrate—SiO, porous media: (a—c) snapshot of the final structure of hydrate +
porous media simulation system with different pore sizes (a — 0.35, b — 0.8389, ¢ — 1.2053 nm); (d) simulated thermal conductivity values vs. temperature.
As observed, the thermal conductivity of the system increases with temperature increase. At a certain temperature, the thermal conductivity further
increases as the pore size reduces due to improvement of the SiO, surface (with higher thermal conductivity) and the micro-energy transfer associated
with hydrate-SiO, at lower pore sizes (adapted with permission from Guo et al.,*® Copyright 2017 Institute of Physics).
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effective thermal conductivity, however, is not straightforward
due to the co-existence of gas hydrate, free water/ice, free
gas and solid sediment grains, and, more importantly, their
spatial distribution throughout the system.>*?> Experimental
studies have revealed a complex interplay among porosity,
effective stress, particle size, and fluid-versus-hydrate filled pore
spaces.”?%?**?** For HBS, the effective thermal conductivity
strongly depends upon involving particle-level heat transport
processes including (1) conduction along the mineral, (2) particle-
to-particle conduction across contacts, (3) particle-fluid/hydrate-
particle conduction near contacts, and (4) conduction/convection
along the pore fluid within the pore space,*" influenced by
presence of free gas and water/ice, and hydrate growth
pattern.’®® Detailed reviews on the effect of hydrate formation
on the effective thermal conductivity of sediments can be found
elsewhere.'?%?%°

Laboratory measurements of the effective thermal conduc-
tivity of hydrate-bearing sediments are usually conducted
using transient hot-wire'®¥219?26227 and transient plane
source'”>174220228232 techniques. Transient hot-wire technique,
however, is not easily adapted for in situ measurement where
sample penetration is difficult. This makes the transient plane
source technique more conducive towards adaptation for field
use.’® Recently, a thermistor-based method combined with
Micro-CT observations was employed to further investigate the
effect of saturation and spatial distribution of co-existing phases
on the effective thermal conductivity of HBS.>**">%¢

Development of accurate predictive models for the effective
thermal conductivity of composite materials such as HBS
comprises an important portion of the literature about heat
transfer in porous media. However, a unified model or predic-
tion procedure with universal applicability has not been found
yet.”*” Based on their principles, the existing predictive models
can be categorized into Mixing Models, Empirical Models,
Mathematical Models, Volume Fraction Models, Packing Struc-
ture Models, and Pressure-dependent Models. A detailed review
of the existing models can be found elsewhere.”*®

There are few published data on the effective thermal
diffusivity of gas hydrate-sand/sediment mixtures.'®"'7*??® Gas
hydrate-bearing sediments can change temperature more rapidly
than hydrate-free sediments as the thermal diffusivity of
methane hydrate is more than twice that of water."*® Hydrate
should therefore be accounted for in transient heat flow applica-
tions such as safety assessments for drilling into or through
hydrate-bearing sediments.

Unlike the effective thermal diffusivity and conductivity, the
heat capacity of HBS depends only on the mass fractions of
sediment, hydrate, and pore fluids rather than on their pore-
scale distribution and interfacial effects.'*® Therefore, hydrate
formation can significantly lower the specific heat of sediments.

2.4. Electromagnetic properties

The electromagnetic characteristics of a material including
the steady state charge migration under an electric field,
polarization and magnetization can be quantitatively expressed
by the Electrical conductivity (o), magnetic permittivity («*) and
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magnetic permeability (u*)."*® Electrical measurements have
been widely used as a primary method to detect the spatial
distribution of hydrate in natural sediments.>**>** They can also
be employed to monitor the formation/dissociation of clathrate
hydrates or even to evaluate the performance of hydrate
inhibitors.”****®**”  When transformed from an aqueous
phase system to pure hydrate, electrical conductivity decreases,
meaning that this property can be used to detect hydrate
formation/dissociation.>”’**®*  The ionic concentration in
solution has a primary effect on resistivity and a second-order
effect on magnetic permittivity, hence permittivity can be used
as a more reliable parameter to estimate water saturation and
extract volumetric hydrate saturation in a multiphase hydrate
bearing system as well. For instance, the electrical resistivity logs
acquired from natural gas hydrate bearing sediments confirm
the presence of less conductive hydrate bearing zones relative to
the water saturated regions.>**>>> The magnetic permeability,
however, is usually considered to be unity for pure hydrates and
hydrate bearing sediments as these materials are generally non-
ferromagnetic."*® In addition to the electromagnetic properties,
dielectric measurements have also been employed to quantify
gas hydrate saturation in both laboratory and field studies.”>*>>®

2.4.1. Pure clathrate hydrates. Knowledge of the electrical
conductivity of pure hydrates is essential for the quantitative
investigation of hydrate distributions in porous media.
Generally, clathrate hydrates exhibit a lower electrical conduc-
tivity compared with water and even ice. So far, there are a few
studies reporting the electrical properties of pure clathrate
hydrates.>**¢* Measurement of the electromagnetic properties
of clathrate hydrates in the laboratory can be carried out via
the Impedance Spectroscopy method, whereby the electrical
behaviour, conduction mechanisms and other internal charges
can be revealed via changing current frequencies.”®® Similar to
the other physical properties of clathrate hydrates such as
mechanical strength and thermal conductivity, the quality of the
electromagnetic properties obtained experimentally is markedly
affected by the specimen preparation technique, particularly for
gas hydrate samples where the gas solubility in the water is limited
and the hydrate formation usually starts from the gas-water
interface.”*® Hydrate formation in brines results in increasing
electrical conductivity for the bulk solution because hydrate for-
mation excludes salts.****** Conducting several heating/cooling
cycles has been recently shown to be an appropriate method
to obtain reliable electrical conductivity data for unmixed,
polycrystalline methane hydrate samples.>*°

2.4.2. Hydrate-bearing sediments. Sediment components
can be characterized in terms of their volume fraction and
spatial distribution by evaluating the bulk electrical and electro-
magnetic properties.”®> The electrical conductivity of HBS is
primarily controlled by the movement of hydrated ions in the
pore water and in electrical double layers around mineral
surfaces, particularly for the sediments with high specific surface
area.’*® Electromagnetic remote sensing techniques such as
controlled-source electromagnetic (CSEM) surveying methods,
complement seismic studies for determination of the gas
hydrates saturation and distribution in natural settings as they
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are sensitive enough to distinguish less conductive hydrates
from pore fluids in sediments.”*****"2”> Archie-type equations
with empirical adjustment parameters can then be used to
establish the connection between electrical properties and
hydrate content in order to approximate the gas hydrate
saturation.>”®”® However, such estimates are subject to error
primarily due to the semi empirical nature of Archie’s equations
and the lack of reliable laboratory and field calibration
studies.>”® In fact, when predicting the effective electrical con-
ductivity of a given hydrate bearing specimen, it is essential
to account for the pore-scale distribution of the co-existing
compounds including the mineral grains, water/ice, hydrates
and free gas.”’®>*®' A detailed review regarding the electrical
conductivity models can be found elsewhere.?**

Several fields and laboratory studies have been conducted to
measure the electrical conductivity of hydrate bearing
sediments.?®***° Given that various factors such as the ionic
concentration of the aqueous solution, gas exchange and
fluid-filling porosity of the pores affect the electromagnetic
properties of gas hydrate bearing sediments,*®" the electrical
conductivity of porous polycrystalline methane hydrates in
mixtures with brine and sand was recently studied via in situ
impedance measurement to gain insights regarding the petro-
physical relations between methane hydrates, brine salinity and
the host sediment.>>*%* Several possible conduction mechan-
isms were also determined to correlate resistivity data with
methane hydrate saturations, information that can be used to
improve the reliability of existing and new electrical models. The
models available in the literature have been mainly developed
according to the rock-physics models.>**°® As such models
cannot sufficiently account for the spatial arrangement of
hydrates, effort focuses on addressing this shortcoming using
the finite-element method in order to simulate the electrical
characteristics of hydrate bearing specimens reconstructed by
different methods such as the diffusion limited aggregation
(DLA) model.**”* In addition, electrical resistivity tomography
(ERT) has been shown as promising in characterizing electrical
properties of hydrate bearing sediments.****°*

The magnetic permittivity is expressed as a complex number
to account for its magnitude as well as its phase relative to the
excitation. In hydrate studies, however, the real component of
the permittivity is mainly investigated given the typical small
contribution due to polarization losses (represented by the
imaginary component) in the operating frequencies ranging
between Hz and kHz.*® As discussed earlier, the magnetic
permittivity is influenced by geometric and spatial effects.
Some models proposed for estimation of the effective magnetic
permittivity of hydrate bearing sediments include the volumetric
linear and quadratic methods.

2.5. Mechanical properties

Understanding of the mechanical behaviour of clathrate
hydrates and the internal mechanisms of their deformation
as well as their interaction with the host sediment is essential
in gas production from natural gas-hydrate-bearing sediments,
environmental and climate impact studies, hydrogen storage
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and hydrate technology applications. Similar to the thermal
properties, it has been revealed that the mechanical properties
of clathrate hydrates are different from those of ice Ih.3°*3%3

2.5.1. Mechanical properties of pure clathrate hydrates.
Experimental determination of the mechanical properties of
clathrate hydrates is usually conducted using an apparatus
consisting of a hydrate former unit and a mechanical measure-
ment unit. Upon completion of the hydrate formation process at a
desired condition, the mechanical properties of the specimen can
be measured via direct or indirect methods.”** The quality of the
experimental results is undoubtedly affected by the measurement
technique, system temperature, pressure and hydrate sample
compaction.** It is difficult to make pure non-porous gas hydrate
samples using existing techniques, and the presence of residual
water/ice and free gas in the system due to incomplete hydrate
formation process can adversely influence the measurements.***
Experimental studies of laboratory-formed methane hydrate
specimens containing ice confirm the strong dependence of their
mechanical characteristics on the ice content.****** Efforts have
been made to reduce the uncertainties associated with hydrate
formation technique by growing aggregates of gas hydrate under
static conditions via combining cold and pressurized gas with
granulated ice and/or within custom-built pressure vessels
where the specimen can be compacted to porosities lower than
2.0%;°°°73% however, the mechanical behaviour is still influ-
enced by the presence of micropores.***"*

2.5.1.1. Indirect determination of the mechanical properties.
Indirect methods such as acoustic measurements were initially
used to infer the mechanical properties of pure clathrate hydrates.
For these studies, elastic wave (compressional and shear wave)
velocities were measured using different techniques such as
the ultrasonic pulse transmission method??>2%%398:3127316 3pq
Brillouin spectroscopy method;*’”*" the results were then
used to calculate the parameters related to elasticity mechanics
such as elastic moduli (bulk, shear and Young’s moduli) and
Poisson’s ratio.>'* X-ray diffraction, neutron diffraction and
Raman spectroscopy techniques are also utilised to calculate
the isothermal bulk modulus by measuring the unit cell volume
as a function of pressure.’?7329

Experimental studies suggest that the elastic properties of
pure clathrate hydrates depend upon the hydrate composition
and structure, the guest molecule, and cage occupancy.”'*?'*3'8
Increasing the system temperature results in a reduced bulk
modulus and Poisson’s ratio for clathrate hydrates and conse-
quently, a lower compressional wave velocity, similar to observa-
tions for ice Th. However, the Young’s and shear moduli were
observed to vary depending on the guest molecule and even
show anomalous behaviour,>'*?>'7:30%:303,313319,330 por different
pressures, bulk modulus and Poisson’s ratio of clathrate
hydrates increase with an increase in the pressure while the
Young’s, and shear moduli variations strongly depend on the
guest mOleCule.214’302’323’330’331

2.5.1.2. Direct determination of the mechanical properties.
Influenced by the aforementioned sources of uncertainty, the
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strength of pure clathrate hydrates was initially believed to be
similar to ice Ih.>'***> However, laboratory constant-strain-rate
experiments conducted on poly-crystalline methane hydrate
specimens suggested a different stress-strain behaviour with
an extraordinary strength (20 to 40-fold higher) compared with
ice, which could be attributed to dislocation movement and
molecular diffusion.?**?°*333733% ynlike ice Th which typically
displays an ultimate yield strength followed by relaxation to
steady-state behaviour, methane hydrate exhibits an extensive
strain hardening followed by strain softening during
compression.?*®?*>33¢ In fact, the methane hydrate stress-
strain curve can be divided into two stages: (i) the rapid
structural damage stage and (ii) the complete structural
damage stage.**” Interestingly, methane hydrates undergo
partial decomposition during deformation due to a solid state
disproportionation or exsolution process, even well within the
stability zone.?*”*** Studies of the creep behaviour of methane
hydrates suggest direct proportionality of axial and creep
strains with external load.****3*

The mechanical strength of pure clathrate hydrates was
experimentally shown to be influenced by the system tempera-
ture, confining pressure, strain rate and density.>'* More
specifically, the compressive and shear strength of methane
hydrates increase with increasing confining pressure, strain
rate and density.****> The deviatoric stress increases with an
increase in the strain rate at confining pressures less than
10 MPa, while at higher values there is no obvious change in
the deviatoric stress.**> Methane hydrate strength was also
observed to be very sensitive to temperature, with lower tem-
peratures leading to higher the strength.>***** When well within
the stability zone, the compressive strength of hydrates is higher
than that of ice Ih; however, the strengths become closer in
value when hydrate is less supercooled (relative to the hydrate
phase boundary).**°**' The essential mechanisms causing the
difference in the mechanical properties of clathrate hydrates and
ice is underpinned by the special hydrate lattice structure and
the host, guest and host-guest interactions.”'* In the small
strain regions (<1.5%), the stress-strain behaviour is generally
not influenced by the confining pressure and temperature;
however, within at the whole strain region, the mechanical
behaviour is markedly influenced by the strain rate.>**

2.5.1.3. Theoretical studies. The stringent high pressure-low
temperature conditions required for hydrate formation and
stability make the direct measurement of the mechanical
properties and deformation mechanisms of pure hydrates
difficult using common experimental techniques. This in turn,
results in poor accuracy for values for the mechanical proper-
ties, and the extrapolation of these values can be controversial
controversial.’’* The rapid progress of modern computer
technology together with the unavoidable uncertainties asso-
ciated with the experimental studies means models are the
most promising alternative for providing insights into the
mechanical behaviour of pure clathrate hydrates.”"*

Theoretical approaches such as Density-Functional Theory
(DFT),**>*> Molecular Dynamics (MD)****>*7% and Lattice
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Dynamics (LD) simulations®**%” have been used to probe the
mechanical behaviour of clathrate hydrates, with links to
macroscopic phenomena. They have also been employed to
deliver insights into problems not well understood by experi-
ments and to validate the experimental results. These models
also help elucidate the underlying mechanisms controlling the
mechanical properties of clathrate hydrates and to explore
why the mechanical behaviour of the clathrate hydrates differ
from ice Ih.*>*®

Recently, DFT was successfully employed to investigate the
ideal strength of methane hydrates under uniaxial, triaxial, and
shear deformation modes and to compare its mechanical
behaviour with that of ice Th.>**® The effect of guest molecule
size on the mechanical properties of a number of hydrates was
also investigated using DFT, suggesting a close relationship
between the shear modulus, wave velocity and the level of
anisotropy in the hydrate lattice, which itself is a function of
guest size.>****73%® More recently, a DFT study compared the
mechanical and vibrational properties of tetrahydrofuran (THF)
hydrates with natural gas hydrates, providing significant
insights into the accuracy of using THF hydrates as an analogue
for natural gas hydrates.**°

MD simulations have assisted with the construction of
theoretical stress-strain curves for pure clathrate hydrates for
different structures and at different pressures and temperatures
and led to the determination of such mechanical properties as
Poisson’s ratio, elastic moduli and strength and identification of
fracture initiation process.*>**>*3%7:3%93%1 The origin of strain
hardening in methane hydrates under compressive deformation
was also investigated using MD simulations. The simulation
results highlight the role of the guest molecules as non-
deformable units preventing the failure of hydrate structures
and thus leading to the strain-hardening phenomenon.**® MD
simulations also revealed that the temperature dependence of
the elastic moduli of pure hydrates is dominated by the guest
molecule, a phenomenon of particular importance in hydrate-
based applications such as carbon capture and storage where
CH, is replaced by CO,.>** The role of guest molecules on the
mechanical properties of hydrates was further explored with the
aid of tension MD simulations.*** The results indicated that the
tensile strength and Young’s modulus of hydrates are influenced
not only by the type, size and shape of guest molecules but
also on its polarity. Of particular interest, MD simulations
helped with shedding light on the mechanical instability
of monocrystalline and polycrystalline methane hydrates,
providing molecular insights regarding destabilising mechanisms
of gas hydrates under mechanical loading and their grain-
boundary structures®>® (see Fig. 7). Moreover, it was shown
that polycrystalline hydrates under compression and tension
exhibit grain size strengthening at low grain sizes and grain size
weakening at larger grain sizes. The intrinsic differences in the
mechanical properties of monocrystalline methane hydrate
monocrystalline ice Ih were also explored using MD simulations.
The simulation results suggest these differences could be due to
the host-guest molecule interactions and relative angles which
tetrahedral hydrogen bonds make to the loading direction.**®

This journal is © The Royal Society of Chemistry 2020
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Fig. 7

(a) Stress—strain relationships for single-crystal methane hydrate. The molecular cohesive energy distributions and corresponding localized

molecular structures (b) initially, (c) at the onset of fracture, (d) immediately after initial fracture and (e) at a strain of 0.18 (reprinted with permission from

Wu et al.,*>* Copyright 2015 Springer Nature).

Microscopic insights offered by the molecular modelling efforts
could establish the fundamental understanding of the mechan-
ical responses of naturally occurring and artificial synthetic gas
hydrates. However, there is a gap in the knowledge as most of the
studies have focused on qualitative behaviours and mechanisms
and are yet to fit these findings to laws to achieve upscaling.
2.5.2. Mechanical properties of gas hydrate-bearing sediments.
The presence of gas hydrates within a formation controls the
mechanical stability of gas hydrate-bearing sediments.**’
Hence, mechanical instability and degradation associated with
gas hydrate dissociation in gas hydrate-bearing sediments due
to natural processes®’® and human intervention (such as gas
production,®”**”> CO, sequestration,*”* drilling operations®”*>"%)
may play a role in submarine slope failures, seabed subsidence,
and failure of the foundations of seafloor installations.?”~3%*
It is thus imperative that the geophysical and geomechanical

This journal is © The Royal Society of Chemistry 2020

properties of gas hydrate-bearing sediments are well investi-
gated to understand their occurrence and stress-strain and
permeation characteristics. Laboratory testing of retrieved
undisturbed field samples***%® and simulated gas hydrate-
bearing sediments®*” ! can be employed to study the effect of
the various parameters such as pressure, temperature and hydrate
saturation on the geomechanical behaviour of gas hydrate-
bearing sediments. According to the experimental studies, the
mechanical properties of gas hydrate bearing sediments such as
the elastic moduli decisively depend on the gas hydrate saturation
and pore-scale distribution.'?®?81:392739 pepending on the sedi-
ment grain size, stress field, and the amount of water and natural
gas available, gas hydrates formation may enhance the strength of
the host sediment and reduce its permeability via displacing
grains or interconnecting and cementing them.’**?°” On the
other hand, gas hydrates dissociation is associated with the
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release of the pore water and natural gas and migration of fine
particles through porous sediments,?8"3%8:3%

The effects of hydrates on the mechanical properties of the
host sediment properties strongly depend on where hydrates
nucleate and grow in pore space. The pore-scale habit of
hydrates is determined primarily by the state of effective stress
and host sediment grain size (Fig. 8).*°° For coarse-grained
natural HBS, when excess water presents in the system, the

Fine-grained sediments

Sediment (q)
particle

[ Hydrate

Paticle-displacive

View Article Online
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main pore-scale habit is preferred to be pore-filling,*°* whereby
hydrates nucleate on the sediment grain boundaries and grow
freely into the pore spaces without bridging two or more
particles together. Moreover, since gas hydrate is suspended
in pore fluid, it primarily alters the pore fluid bulk stiffness, fluid
conduction properties and bulk density of the sediment.*** At
saturations generally more than 40%, pore-filling hydrates turn
into load-bearing, where hydrates bridge neighbouring grains

Coarse-grained sediments

o |

A U] ~
Pore-filling & :

(u) i
o E

.. . Patchy E
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Fig. 8 Core-scale hydrate morphology in HBS samples and conceptual pore-scale habits for fine-grained and coarse-grained sediments (reprinted with

permission from Ren et al.,*°% Copyright 2020 Elsevier Ltd).

5238 | Chem. Soc. Rev., 2020, 49, 5225-5309

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8cs00989a

Open Access Article. Published on 22 juni 2020. Downloaded on 2026-02-15 19:21:49.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chem Soc Rev

and become a part of the skeleton and accordingly, contribute
to the mechanical stability of the sediment. For these two pore-
scale habits, there is always a water film remaining on the grain
surface. When excess gas presents in the system, grain-coating
habit is preferred by hydrates, whereby they form a coating
around grains. When there is enough free gas in the system, the
grain coatings can coalesce to cement intergranular contacts
and even use up remaining water.®® Pore-scale habit for fine-
grained HBS is different from coarse-grained sediments, mainly
due to smaller pore-size and higher specific surface. While
capillarity acts as a hindrance for hydrate nucleation, hydrate
growth can displace sediment grains, leading to particle-
displacive segregated morphology, e.g. lenses, nodules, chunks
and veins.**® A comprehensive discussion regarding the pore-
scale habit of HBS can be found elsewhere (Fig. 8).*%°

It must be noted that laboratory-formed HBS samples are
more often used to study properties of HBS;*** however, they
are not necessarily representative of naturally occurring HBS
samples, particularly in pore-scale habits and physical proper-
ties. In recent years, the advancement of pressure core acquisi-
tion and analysis technology has enabled scholars to image and
interrogate pressure cores to study hydrate habits of nearly
intact naturally occurring HBS preserved at their in situ pore
pressures.**>%® Post-recovery analytical capabilities for pressure
core samples have also allowed for reliable and systematic
measurement of physical properties.*®”

2.5.2.1. Fluid flow and permeability characteristics. Permeability
is a measure of the ability of a porous medium to allow fluids to
pass through it, and the relationship between fluid flow and
permeability controls both fluid-flow pathways and the accumula-
tion, distribution and saturation of gas hydrates."*® This is
particularly important for gas transport, production or migration
into the oceanic environment.’”® Apart from the mineralogy,
shape and packing arrangement of the grains and the size
(specific surface area) and interconnectivity (tortuosity) of the
pores, the presence of gas hydrates adds additional complexities
because the spatial distribution of hydrates can alter the pore size,
shape and interconnectivity and accordingly the permeability of
sediments."*® To date, numerous macro- and micro-scale experi-
mental studies have been conducted to investigate fluid flow
through hydrate bearing porous sediments and explore the link
between the permeability evolution and hydrodynamics of gas-
hydrate systems.**"*%°*** A review regarding the experimental
techniques for investigating the permeability properties of
hydrate-bearing sediments can be found elsewhere.**

Furthermore, several numerical simulation studies have been
conducted to elucidate the geological processes associated with
hydrate formation and dissociation in porous media under a wide
range of conditions.***™**! Studies also to predict the behaviour of
gas hydrate bearing sediments during gas production,**>**° a
process for which the absolute and relative permeability values
and relationships are crucial given their influence on gas and
water production rates. A review regarding recently developed
relative permeability models can be found elsewhere.*®" In situ
observations of pore structures using X-ray microCT and
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Nuclear Magnetic Resonance Imaging (MRI) can significantly
improve our pore-scale understanding of the permeability
characteristics of gas hydrate bearing sediments as a function
of hydrate saturation.*®®*>°™*%% A review regarding the analyti-
cal and empirical correlations used for determination of per-
meability of hydrate bearing sediments has been published by
Joseph et al.*>®

Fines, which commonly coexist with sediments that host
natural gas hydrates, can be readily mobilized by water and/or
gas flow during gas production.*®® Fines migration inherently
involves the permeability impairment associated with the
generation, movement, and retention of sub 100 pm solid
particles in porous media.*®* Several experimental and numerical
studies have recently been conducted to further understanding of
the contribution to permeability evolution due to fines that are
mobilized during gas production.*®**6*~1¢7

To date, an accountable number of studies have been
undertaken to characterize fluid flow in sediments containing
hydrates given their vital role in exploration and exploitation of
natural gas hydrate as well as assessment of the impacts due to
the hydrate dissociation on submarine instabilities, marine
ecosystem and global climate change. However, there exist
several challenges mainly due to the difference between the
simulated HBS samples, core samples and natural ones, leading
to the discrepancies between the measured/estimated perme-
ability and the real values.*®® The main challenges in lab-scale
studies include difficulties associated with the HBS sample size
and methods followed to form hydrates within the host sedi-
ment and maintain the equilibrium conditions during the test
process (to avoid hydrate formation or dissociation).*"*%*%% On
the other hand, the flow test method (Steady State/Unsteady
State) adds more uncertainties since these methods are usually
time-consuming and inherently rely on assumptions far from
the real conditions governing HBS occurrences.*® This makes it
essential to address the lab challenges in accordance with the
flow test methods. Of particular importance is the pore-sale
habit of hydrates in artificial samples which is predominantly
controlled by the hydrate formation method. The pore-scale
habit in conjunction with the pore-structure, anisotropy and
heterogeneity influence the permeability characteristics of
HBS,"”° which makes it challenging to synthesize artificial
samples imitating natural ones. Thus, to bridge the gap of
measured permeability between laboratory samples and natural
sediments, it is of utmost priority to upgrade the existing
methods and apparatuses or even develop new measurement
methods. Challenges encountered in theoretical analysis and
numerical simulations are mainly due to several simplifications
such as assuming homogeneous and isotropic reservoir/porous
medium where hydrates are uniformly distributed with a pre-
determined pore-scale habit. Insights provided by the lab scale
studies are required to be considered in numerical simulations
to be able to make reliable permeability predictions. Further
discussion in this regard can be found elsewhere.*®

2.5.2.2. Geophysical properties. Geophysical studies are
essential in assessing natural gas hydrate bearing sediments
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and are extensively used for detection, mapping and characteriza-
tion of gas hydrates occurrence?’* and tracking their formation/
dissociation process within sediments*’? given that hydrates have
much higher elastic moduli than the pore fluids and alter the
stiffness of the pore fluid and host sediment."”® Hydrate for-
mation has an impact on the skeletal stiffness of host sediment,
enlarging contacts between grains, which in turn, results in
the reinforcement of the bulk and shear moduli. Accordingly,
hydrate bearing sediments show elevated elastic wave velocities
depending on the saturation and pore-scale habit of the hydrates
within the sediment framework.>®> However, the strong depen-
dence of the elastic moduli of hydrate bearing sediments on the
pore-scale habit of the hydrates may cause ambiguity when
inferring the hydrate saturations from measured velocities.*”**”>
A review in this regard can be found elsewhere.'*®

A tremendous number of field-scale geophysical studies have
been undertaken in North America,*’®™*5% Asia,?*°:250:254,483-490
Europe,*®**? Africa***™*® and Oceania®®’>°* in order to under-
stand the natural occurrences of gas hydrates and quantify the
extent and distribution of gas hydrates within the sediments
for exploration purposes. Seismic techniques are the most
commonly used methods for detecting gas hydrate occurrences,
particularly in the marine environment, where they are
employed to identify Bottom-Simulating Reflections (BSR).>*
BSRs can be observed at a depths of up to several hundred
meters below the seafloor in continental margin sedimentary
sections and are a seismic reflection likely to be caused by the
elastic velocity contrast between the overlying gas hydrate-bearing
sediments and the underlying gas saturated sediments.”®* The
BSR is the main identifier for the presence of gas hydrates,
corresponding to the deepest level at which natural gas hydrates
are stable. BSRs can be either continuous, discontinuous, or
plumbing.’*>*°® However, sediments can contain gas hydrates
without having a BSR, particularly if hydrate is not present near
the phase boundary due to the nature of the sediments there or
insufficient methane for hydrate to form directly above the free
gas phase.’® Elastic wave velocities combined with amplitude
variation with offset (AVO) and amplitude variation with angle
(AVA) data from BSRs have been used to estimate associated gas
hydrate and free-gas concentrations as well as infer the distribu-
tion of natural gas hydrate bearing sediments.’***'° Vertical
seismic profiling surveys (VSP) are also used along with downhole
log data to evaluate the effect of gas hydrates on the elastic velocity
of hydrate bearing sediments.>” "

Laboratory analyses of natural or artificial gas hydrate bearing
specimens have been conducted to study the impact of hydrates
on the elastic wave velocities of different types of sediments.
Laboratory studies confirm the significant impact of hydrates
where increasing gas hydrates within the host sediments result
in elevation of the elastic wave velocities.?®*°2°"52% However, the
method of synthesizing gas hydrates in sediment substantially
affects the pore-scale habit of hydrates."**2%4°2 Given the recent
interest in permanent hydrate-based storage of CO, in geological
formations, seismic survey methods could be used to remotely
monitor the CH,-CO, replacement process and evaluate the
stability of the host sediment,*** >3
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Several models have also been developed to establish a
relationship between the elastic moduli and the gas hydrate
saturation in order to quantify the amount of gas hydrates
accumulated in the sediments and predict HBS physical
properties.”*®* These models consider the elastic properties of
sediments, pore fluid(s) and gas hydrates™* and generally can be
categorized into Time-average equations, Weighted-average equa-
tions, Cementation theory-based models, and Effective Medium
Theory (EMT) models. Detailed reviews of these can be found
elsewhere.**>>>%¥ A number of theoretical and numerical
approaches have also been developed to detect and quantify gas
hydrates in submarine and permafrost regions to give more insights
into elastic wave attenuation mechanisms.>**>*

2.5.2.3. Geomechanical characteristics. The strength of a
hydrate bearing sediment subjected to a principal effective
stresses (axial (o,") and confining stress (03')) at a specific pore
P-T is expressed by the cohesive resistance (c¢) and frictional
resistance and described by the friction angle (¢). These proper-
ties can be obtained by applying the Coulomb failure criterion
which relates the shear stress at failure (tf) to the normal
effective stress acting on the failure plane (¢,,’) in the Mohr-
Coulomb failure diagram."*® The strength parameters together
with the other geomechanical properties such as Young’s
modulus (E), Poisson’s ratio (v) and dilatancy angle (i) are
measured using the triaxial compression tests.>®' Recently,
numerous triaxial experiments have been carried out to deter-
mine the geomechanical properties of natural and synthetic
gas hydrate bearing sediment samples at high pressure and
low temperature conditions.?8¢389:391:5417358 ghear strength of
specimens at specific pore pressures and temperatures with a
given hydrate saturation could be tested under undrained (CU)
or drained (CD) modes after consolidation, a detailed discussion
of this can be found elsewhere."*® Given the fact that the
geomechanical properties of sediment predominantly depends
upon the grain type, shape, packing, fines content and degree of
consolidation,”**”® the presence of hydrates within sediment
generally results in bridging/binding of sediment grains and
consequently a higher stiffness, pre-failure dilation, and strength
whereas the friction angle has been interestingly observed to
remain constant with increasing the hydrate saturation.*®'

The pore-scale habit of hydrates can markedly affect the
strength evolution of the host sediment, particularly at lower
saturations (<30.0%).°®" According to recent experimental
studies, there is a critical saturation at which the local growth
of hydrates and/or their extension across adjacent grains result
in creating hydrate networks or frame structures throughout
the specimens and accordingly substantial enhancement of
the cohesive resistance, normalized stiffness and volumetric
dilation as well as switchover of the stress-strain response
from strain-hardening to strain-softening,?®”:39%342:5627564 Thjg
critical saturation ranging from 15.0 to 50.0% is essentially
affected by the spatial distribution of hydrates in the sediment
matrix and requires to be taken into consideration to avoid
the formation of geomechanical instabilities associated with
the hydrate dissociation when predicting the response of gas
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hydrate bearing sediments to different external stimuli such as
mechanical loading and P-T variations during exploitation. At
higher saturations (> 80.0%), however, the sediment grains will
be cemented by hydrates exhibiting a monolithic system with
minimal host sediment characteristics.®®’ The presence of
occluded pores within the sediment makes the measurement
of the pore pressure difficult, hence interpretations at these
saturations are usually based on the total stress, not the effective
stress. Further details of this have been provided elsewhere.*®'

Confining stress (03) and system temperature also affect the
geomechanical behaviour of hydrate bearing sediments. At a
given hydrate saturation, higher confining stresses result in
higher interlocking and crushing of grains and accordingly
overall increase in shear strength and stiffness, reduction in
Poisson’s ratio and dilatancy angle and switchover of the stress-
strain response from strain-hardening to strain-softening.>*>>%’
Temperature reduction results in higher stability of hydrates
within the host sediment and a higher shear strength. Several
experimental studies have been conducted recently to explore
the stress—strain response of hydrate bearing sediments as a
function of hydrate dissociation. This process is associated
with significant changes in the matrix of gas hydrate bearing
sediments such as an increase in pore pressure under
undrained condition or fluid flow under drained condition,
secondary hydrate/ice formation and loosening of grains.>**>"
Creep tests have recently been conducted on hydrate bearing
specimens which are particularly relevant given the importance
of predicting the long-term stability of gas hydrate bearing
sediments in Arctic and permafrost regions.”’*”* More
recently, the geomechanical characteristics of gas hydrate
bearing frozen sediments have been experimentally studied to
investigate the influence of gas hydrates and ice coexistence on
the geomechanical strength of the sediment.>®'™>%3

The geomechanical behaviour of gas hydrate bearing
sediments has also been simulated mainly via applying the
Mohr-Coulomb, Cam-clay, Duncan-Chang and critical-state
models. These geomechanical models available in the literature
have been employed to capture the effect of hydrate saturation
and spatial distribution on the sediment strength, stiffness and
dilation characteristics.’®**%° The geomechanical models are
also increasingly included in numerical reservoir simulators to
investigate the coupled geomechanical response of hydrate
reservoirs to different external stimuli.>®>>”>9'->%7 additionally,
the Discrete Element Method (DEM) has been extensively utilised
for the simulation of the mechanical behaviour of hydrate bearing
sediments under triaxial compression.**®**° More recently, some
micromechanical models have been proposed for hydrate bearing
sediments whereby the hydrates are represented as solid particles
positioned between sand particles and contributing to the
skeleton response even for small strains.®**¢

2.6. Rheological properties of hydrate slurries

Rheology studies on hydrates have provided insights into the
rheological properties of hydrate-laden suspensions, which may
be found in oil and gas transportation pipeline networks®'*°*3
during and after hydrate formation, in order to improve hydrate
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flow assurance strategies.’’*®" Investigation of the viscosity
alteration of gas hydrate slurries due to presence of hydrate
particles and aggregates in pipelines is essential in flow assur-
ance studies. This enables the development of a reliable model
capable of describing hydrate-laden flow characteristics in pipe-
lines to reliably determine the extent to which hydrates may
cause flow hindrance.®'*°"” Recently there has been a paradigm
shift in flow assurance from ‘“‘complete hydrate avoidance” -
where large quantities of hydrate inhibitors are injected
into flowlines to prevent gas hydrate formation - to “hydrate
management” — where gas hydrates are allowed to form in the
flowline, but the hydrate slurry properties are controlled. This shift
renders it imperative to gain knowledge of the rheological behaviour
of the gas hydrate slurries in order to find the key factors influencing
the transportability of gas hydrates in flowlines.*'® Clathrate hydrate
slurries also have applications in refrigeration where hydrate slurries
are used as a two-phase (solid-liquid) secondary refrigerant
(TPSR)****** to provide chilling.

To date, several efforts, including large-scale flow loop-
based®!%%2624637 and small-scale benchtop rheometer-based®*® *>
studies, have been undertaken to obtain experimental evidence on
the rheological properties of hydrates and investigate the effect of
hydrate agglomeration and deposition on hydrate slurry viscosity.
However, it has always been difficult to reproducibly control the
hydrate formation under high pressures for hydrate slurry
characterisation.®****° In flow loop-based studies, the turbulent
behaviour of industrial pipelines is approximated, and the
apparent slurry viscosity estimated from measured pressure
drops by applying the Hagen-Poiseuille and Rabinowitsh-
Mooney equations under a number of assumptions.®>* Flow
loop experiments provide a practical way to study the effects of
flow regimes and patterns on hydrate slurry rheological
behaviour.®®®> In benchtop rheometer-based studies, the shear
rate, shear stress and accordingly the viscosity of a hydrate slurry
sample are directly measured 