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Abstract

During the last decade, artificially architected materials have been
designed to obtain properties unreachable by naturally occurring mate-
rials, whose properties are determined by their atomic structure and
chemical composition. In this work, we implement a new reinforcement
learning (RL) method able to rationally design unique metamaterial
structures at the nano-, micro-, and macroscale, which change shape
during operational conditions. As an example, we apply this method to
design nanostructured silicon anodes for Li-ion batteries (LIBs). The RL
model is designed to apply different actions and predict change during
operational conditions. The multi-component reward function comprises
an increase in the total storage capacity of the resulting battery elec-
trode and structural parameters, such as the minimum distance between
the individual components of the nanostructure. Upon experimental val-
idation using a polymer-based 3D printing technique, we expect that the
newly discovered structures improve the current Si-based LIB anodes
state-of-the-art by almost three times and almost ten times the current
commercial LIB based on a graphitic anode. This RL-based optimization
method opens up vast design space for other responsive metamaterials
with tailored properties and pre-programmed structural transformation.

Keywords: metamaterials, batteries, reinforcement learning, silicon anode
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2 Reinforcement Learning-based Design of Shape-changing Metamaterials

1 Introduction

The development of new materials with better performance, novel function-
ality, and lower cost is crucial for meeting the ever-increasing societal need
for a sustainable future. Traditional materials discovery is achieved by varying
the chemical formulation and the crystallographic microstructure of a mate-
rial until specific properties are optimized for the targeted application [1].
To expedite this largely ”trial-and-error” approach [2], new materials can be
designed and simulated first (often using atomistic simulations[3]), and then
the best candidates are experimentally synthesised and tested afterwards. How-
ever, this is a lengthy and painstaking process as there is often a significant
gap between what has been simulated and what could be synthesized[4]. To
further expand the toolset for materials discovery with enhanced efficiency,
researchers have been actively working on using materials’ architecture as an
additional turning knob to rationally design the so-called ”metamaterials” to
reach previously untapped areas in the materials property space. The prop-
erties and responsiveness of metamaterials are controlled not only by their
chemical composition and atomic arrangement as in traditional materials but
also through their artificial architectures at the nano-, micro-, and macroscale
[5], which leads to intriguing applications in a variety of fields including
energy storage[6, 7], structural mechanics [8], optics [9], acoustics [10], and
bio-medical engineering [11]. This newly explored degree of freedom opens up
a new vista of application opportunities for shape-changing materials other
than the Si electrodes that will be discussed in this work. To induce a large
degree of structural transformation, magnetically responsive materials such
as ferromagnetic-particle-embedded composite polymers [12] and thermally
responsive material such as shape memory polymer [13] and liquid crystal elas-
tomers [14] can be used. The unique benefit of electrochemical modulation is
that the shape change is non-volatile meaning that the structure will stay in
the transformed geometry after the external stimuli are removed. A variety of
electrochemically active materials exhibit large volumetric expansion and con-
traction associated with reversible redox reactions including but not limited
to intermetallics [15], 2D materials [16], and conjugate polymers [17]. Liquid-
update-induced swelling is another simple yet effective way to administer large
volume changes in architected materials. A variety of polymers and composites
swell significantly in aqueous and organic solvents and recover their original
structures upon drying [18]. In particular, hydrogel is a versatile material that
is sensitive to temperature, solvent type, and pH and ion concentration in the
chemical environment [19]. For example, self-regulating microfluidic systems
made out of shape changing metamaterials have been designed to maintain
a stable temperature and pH [20]. Specific materials with various degrees of
shape changes, mode of deformation, boundary conditions, stimulus types,
and surrounding environment need to be carefully selected based on specific
application need.

The design of the artificial structure of metamaterials is often inspired by
conventional periodic lattice structures such as simple cubic, octet, or gyroid
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Reinforcement Learning-based Design of Shape-changing Metamaterials 3

structures and geometric motifs such as fractal or hierarchical structures [21],
and then optimized by systematically varying geometric parameters such as
beam diameter, wall thickness, and unit cell size. More recently, computational
design methods such as topology optimization and machine learning (ML)
have been implemented to accelerate the discovery process by generating vir-
tual environments that can be used to make measurements without fabricating
each structure. A few examples are the deep learning model used to discover
relationships between metamaterial structures and their optical responses and
to accelerate the inverse design of dielectric metasurfaces to miniaturise and
develop optics [9, 22, 23]. These computational design methods are sufficient to
optimize static materials properties but fall short in predicting metamaterials
that change their shapes in response to external stimuli [24]. As illustrated in
Fig. 1, such shape-changing metamaterials benefit a series of important appli-
cations, such as reconfigurable battery electrodes to store more energy while
relieving internal stresses [25], tunable acoustic structures that can actively
control sound propagation [26], stretchable kirigami polarization modulators
for terahertz circular dichroism spectroscopy [27], and hydrogel metamateri-
als with responsive chirality to enable sensitive optical immunodetection of
biomolecules [11]. To overcome the design challenge of such shape-changing
metamaterials, we introduce a Reinforcement Learning (RL) method to opti-
mize the their geometric structures based on specific application needs and the
associated rewards.

In this work, we take shape-changing Li-ion battery electrodes [25] as an
example, and implement a new RL model to design architected silicon (Si)
electrodes for maximum storage capacity. Si is a next generation anode mate-
rial for Li-ion batteries with a theoretical storage capacity 10 times greater
than the currently dominating graphite anodes. However, Si undergoes up
to 300% volume expansion during Li insertion leading to mechanical-failure-
induced capacity fading and limited cycle life [28]. Recently, Xia and co-workers
developed shaping-changing Si metamaterials that can accommodate large Si
volume expansion and relieve the associated stresses by cooperative beam
buckling [25]. Such Si architectures are composed of vertical posts connected
with horizontal beams, as shown in the left part of Figure 1b. During lithia-
tion, the beams cooperatively buckle, forming an in-plane sinusoidal pattern
to accommodate the volume change as shown in the right part of Figure 1b. In
response to the buckling torque, the vertical poles (or nodes) rotate in opposite
directions, and the beam has the shape of a half-period sinusoidals. The change
in shape happens in the 2D plane, and the final electrode material is obtained
by stacking 2D layers with the same layout, which are connected by the vertical
poles. These stacked square lattices show a high Si-mass-normalized capacity
of 2010 mAh per g of Si after 50 cycles at C/6 but the total electrode-level
capacity is low due to the low Si loading. Our RL model agent is designed
to optimise the placement of these Si beams over an area in a virtual envi-
ronment to find an optimised layout that maximises the theoretical storage
capacity based on the input constraints, e.g., lengths of the beams and angles
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4 Reinforcement Learning-based Design of Shape-changing Metamaterials

formed by two beams, as well as, not overlapping beams both in the delithi-
ated and lithiated shapes. Furthermore, we allow the RL model to select both
non-frustrated and frustrated configurations, i.e., the beams connect two nodes
rotating in the same direction, thus forming a full sinusoidal period, as shown
later in Figure 2b. The most promising pattern found using this RL model
has a theoretical capacity over four times larger than the original pattern pro-
posed in Ref. [25]. To validate the RL-predicted design experimentally, we
adopt a simple method in which 3D-printed polymer structures of the opti-
mized metamaterial design are swollen by an organic solvent, which emulates
the lithiation-induced volume expansion in Si-nanostructures and behaves as
predicted in our model.

Fig. 1 Using reinforcement learning to build complex structures based on simple build-
ing blocks (a) we can achieve material properties not naturally present. Examples include
increasing the storage capacity of a battery electrode (b), controlling sound propagation
direction using reconfigurable origami (c), polarization modulation for terahertz wave (d), as
well as chirality-based optical immunodetection of biomolecules (e). Images (a)[29], (b)[25],
(c)[26], (d)[27], (e)[11] adapted with permission from their respective publishers and cre-
ators.

Even though we use these Si-nanostructure electrodes as an exemplar
case, the RL-based design method is general. It can be applied to other
shape-changing metamaterials as illustrated in Figure 1. Reconfigurable meta-
materials can potentially benefit a series of important applications, such as
shape-changing battery electrodes to store more energy, tunable phononic
crystals that can actively control acoustic wave propagation, and adaptive
membrane that can filter or release objects of different sizes on demand. RL-
based topology optimization can predict improved metamaterial designs based
on specific application needs and the associated rewards.
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Reinforcement Learning-based Design of Shape-changing Metamaterials 5

2 Methods

2.1 Reinforcement Learning

Reinforcement Learning (RL) has been successfully used to automate and
accelerate the manual work of finding optimal structures given certain con-
straints [30]. RL algorithms are known for not requiring training beforehand,
but instead of balancing exploration and exploitation based on the environ-
ment, configuration and current knowledge. In a standard RL model, an agent
interacts with the environment to maximize a specified reward. The objective
of our agent is to place Si-nodes and Si-beams connecting the nodes to create
a pattern that changes shape upon lithiation (as shown in Ref. [25]). In RL
literature, solving this problem has two approaches. One involves placing the
nodes, known as the node placement problem, it has been successfully used
in the design of the floor-planning of computer chips,[31] and the node link-
age problem, which has been used in creating connections between users based
on data from two different social networks.[32] The other consists of placing
the nodes and edges together using smaller subgraph structures, e.g. single
bonds[33] or larger molecular fragments.[34] In this work, we follow the latter
approach. The packages used to build such a model are based on numpy, torch
and gym, as well as matplotlib for the visualisations. Below here, we describe
the design of the RL model in detail.

2.1.1 Environment and Subgraphs

The environment is modelled as an initially empty 2D canvas defined by its
width and height, as shown in Figure 2a. Since we are interested in finding a
repeatable pattern along all directions for maximum volumetric capacity, the
canvas has periodic boundary conditions. While different unit cell shapes are
possible, here, we constrain ourselves to an orthogonal unit cell. Nodes and
actions are then added to the empty canvas. The nodes in the environment are
characterized by their position and by a parameter that defines if they rotate
to the left or right during lithiation (indicated with blue and red dots), forcing
the connected beams to bend, forming a convex or concave shape, as shown in
the figure 2a. During the training, the node rotation of the first placed node
is set as left, and the rest of the nodes are based on the previously placed
nodes. The beams are simply characterised by their lengths, which shape they
form when lithiated (a sinusoidal with half or full period) and the nodes they
connect. Experimentally the beams are designed to connect nodes rotating in
a different direction, forming a sinusoidal of half-period [25]. Beams are placed
as straight rods on the canvas, but during lithiation, they bend. The bending
amount depends on the Li content of the beam, but to simplify the modelling,
we approximate that they form a sinusoidal wave of a base amplitude of 0.49.
With this amplitude, we obtain a length of the lithiated beams of 1.445, which
closely resembles the bending observed in the fabricated materials [25].

The environment contains a list of subgraphs that can be added to the
canvas. An example list can be seen in figure 2a. Each subgraph represents an
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6 Reinforcement Learning-based Design of Shape-changing Metamaterials

Fig. 2 a) example of the subgraphs available to the canvas for 30-degree increment angles
and single length beam. Applying one of the subgraphs to the environment (canvas), we
perform an action that applies a rotation to the nodes, creating the bent beam (orange).
b) shape changes generated by the rotation of the nodes that the beam connects, a non-
frustrated (frustrated) edge is represented by a half (full) sinusoidal curve with arrows
indicating rotation direction of each beam (and Figure S1). c) schematics of the architecture
of the Q-network model, the features include a graph embedding, that contains a represen-
tation of all the possible subgraph options that can be used starting from the given node,
and the four metadata features: number of nodes, number of edges, width and height of the
canvas. In this example there are twelve subgraphs, in addition to the the four metadata
parameters, the sixteen features are then the input to the fully-connected (fc) neural net-
work consisting of one additional ReLu layer as well as the output layer equal to the length
of the possible actions. Subsequent to predicting the values for each possible action, a mask
is applied to filter out illegal actions.

action that can be performed over a node and is defined by two nodes, con-
nected by a beam. The parameters of a given subgraph are the angle and length
that the beam forms between the two nodes. The list of subgraphs available to
the environment is generated from the list of angles and beam lengths provided
as input. Because of mirror symmetry, the angles are chosen between 0 and
180 degrees, included. Not all angles and beam lengths can generate patterns
that are periodic within the canvas. To solve this, we allow the RL model to
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adjust the input angles and lengths so that the actions can close the pattern
within the canvas size, i.e., the beam lengths projected on the x- and y-axis of
the canvas are dividends of the canvas dimensions. To calculate adjusting of
angles and lengths, the initial angles and cell size are used as input. For each of
the input angles, the sinus and cosine factors are calculated and rounded up to
the closest even (for y and x axis respectively), after the values are found the
length required is calculated using the Pythagorean theorem. This allows to
have at least one valid closed shape based on the input parameters, as shown
in Figure S2.

We note, that for symmetry reasons subgraphs with an angle in the
(180,360) degree range are equivalent to (0,180). In most of the performed ML
experiments, we define the angles in the [0,90] range and mirror them in the
[90,180] range.

2.1.2 Actions

An action consists of applying a subgraph to a specific node, as illustrated in
figure 2a. Starting from a selected node, the RL agent picks the next action to
take, among a list of actions available for the selected node, masking out the
actions that are illegal. An illegal action is defined as any action that results in
two beams, either lithiated or not, colliding or a new node laying too close to
already placed nodes. Since the illegal actions are filtered out, this results in
the agent not learning from them, which has been found to improve the final
solutions, as shown in Figure 3k.

In addition to these non-frustrated configurations, we allow exploring frus-
tration, i.e., beams that connect nodes rotating in the same direction, which
upon lithiation form beams shaped as full-period sinusoidals (Figure 2b). This
can be done both within the RL model during training, and as post-processing
after the structures have been optimised. If frustrations are allowed during
training, when picking and filtering actions, edges that connect two nodes with
the same direction of rotation are added as frustrated edges. When using post-
processing frustration, we find all nodes of the same directionality that are
close to each other and have no edge, and try to insert a frustrated edge in
those positions, checking for collision with other beams beforehand, bypassing
the requirement of needed a subgraph for each connection.

2.1.3 Agent and Rewards

The goal of RL agent is to find a set of state-action pairs, intended as the
pair formed by a given state of the canvas and one action, that maximizes the
total reward. The reward, η, is defined as the total beam length in the can-
vas, calculated as the sum of all the beam lengths before lithiation, divided
by the canvas area. We employ Q-learning for training the agent,[35] more
specifically the Delayed Q-learning, which aims at maximizing the reward by
delaying any estimate until there is a statistically significant sample of obser-
vations. Q-learning is model-free, which means that the agent uses predictions
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8 Reinforcement Learning-based Design of Shape-changing Metamaterials

of the expected environment response to pick actions, it is based on a ”trial-
and-error” approach to learning instead of a reward system, which predicts
the future reward and points towards increasing it. The actions taken by Q-
learning are based on the Bellmann equation, which defines the quality of a
state, intended as the current canvas layout. This suggests which actions to
take based on how good the current state is. Since there is a huge amount of
possible positions for the nodes, i.e. 2225 for a 2x2 canvas size, the values used
by the Q-learning algorithm to determine actions (Q-values) are approximated
using a neural network turning the agent into a Deep Q-network (DQN).[36]

Figure 2c shows a detailed overview of the neural network used to predict
the Q-value. The input of the neural network consists of four metadata values
(used for internal representation, number of nodes and edges, and width and
height of the canvas) as well as a vector representing all the subgraphs for that
environment, indicated by one or zero, depending on whether the subgraph is
used or not in that state. For dealing with the exploration-exploitation prob-
lem, we employ the ϵ-greedy strategy[37], letting the agent take random actions
with probability ϵ. We slowly decrease the ϵ value throughout an episode fol-
lowing an exponential decay. For determining the activation of neurons of the
network, we use a ReLu curve, since it has the property of not activating all
the neurons at the same time, this would provide a benefit due to the fact
that our graph structures are symmetrical. Using a neural network to repre-
sent the Q-value can cause instabilities.[36] To counteract this fact we employ
several measures to avoid divergent gradients including double Q-learning[38]
and experience replay with a capacity of 1000, which was selected based on
trial and error.[39]

3 Results

All the data produced for this paper[40] as well as the source code are available
in the GitHub repository: https://gitlab.com/Feltbo/metabatt.

3.1 RL-designed Nanostructures

We now use the RL model described above to design Si-nanostructures aiming
at increasing the volumetric capacity of the silicon anode. Because of limita-
tions in the fabrication, as shown in Section 3.2, we assume that the minimum
angle between beams is around 30 degrees. The angle was decided after trial
and error from different angles, starting from 30 and 45 degrees. For now, we
also assume that the length of each beam is equivalent in accordance with
experiments performed in Ref. [25].

We define the score of the RL model as the sum of the lengths of beams
that are in the canvas, such as that the more beams are placed, the higher the
reward. In figure 3a, we can observe the evolution of the reward as a function
of the number of episodes. For each edge added to the canvas, the reward is
increased according to the length of the beam placed. This process can be
clearly observed between steps (c) and (d), where the agent finds a way to
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Reinforcement Learning-based Design of Shape-changing Metamaterials 9

Fig. 3 a) Evolution of the reward for the training of subgraphs for 0, 30, 60, 90, 120, 150,
180 degrees during 500 episodes with and without frustration (in blue and red, respectively).
b-i) nodes and beams configurations for selected improvements in the reward shown in (a).
j) the configuration corresponding to the results reported in Ref. [25] and taken as a baseline
in this work. (k) comparison of the maximum reward achieved over the number of episodes
for different algorithm configurations averaged out of 10 runs each, using [0, 30, 60, 90, 120,
150, 180] angles and fixed length of 1.
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10 Reinforcement Learning-based Design of Shape-changing Metamaterials

Angles
Not adjusted Adjusted

Non frustrated Frustrated Non frustrated Frustrated
0,15,75,90 7.50 7.50 8.12* 7.56*
0,30,60,90 4.00* 5.04* 4.62 (4.24*) 5.26 (4.74*)
0,45,90 2.50 3.18 2.50* 3.41*
0,90 2.00* 2.00* 2.00* 2.00*

Table 1 Maximum theoretical capacity calculated for various actions (angles), with both
frustrated and not frustrated for adjusted and non-adjusted angles and lengths. The *
indicates a closed shape.

optimise the positioning of the beams creating a shape that allows more beams
to be added to the canvas. As a baseline, we take a tetragonal lattice shown in
Figure 3j, which has a reward of 2.00. When considering 30-degree increments
from 0 to 180, excluding frustrated configurations (blue line), we obtain the
canvas of 3i, which has aligned nodes and a reward of 4.00. When frustrated
connections are included (red line), we obtain a similar canvas, but with nodes
rotating in the same direction that is connected, for a total reward of 4.24.
We have implemented two approaches when handling the frustrated edges, the
first one, which is the one that can be observed in 3a, tries to add frustrated
edges to the canvas during the learning process. We note that because of the
larger amount of possible connections, the RL-model becomes slower to train
when frustrated connections are allowed. As mentioned before, we have also
implemented a second method of including frustrated edges in the canvas, a
post-processing tool, which tries to add frustrated connections to an optimised
non-frustrated canvas, which increases the training speed. For the case shown
here, the two methods give identical results.

Table 1 shows the reward for different sets of angles. The highest reward
is obtained for small angles, e.g. 15 degrees. However, the small angles formed
by the beams would most likely impact the cyclability of the anode material.
We thus consider 30 degrees as the smallest angle, which can give a good
trade-off between higher storage capacity and the long life of the electrode. We
note that, in most cases, adding frustrations has a minor impact, below 20%,
on the final reward (except for the 45-degree case). The frustration, however,
increases the mechanical strain on the beam, thus reducing the lifetime and
cyclability of the battery.

Due to this adjusting step, all the adjusted shapes found in 1 all have
the * indicating that are closed shapes, but in some instances (30 degrees
increments), the algorithm managed to find a shape that has an even higher
score by using the beams in unique ways that were not predicted. The drawback
is that the generated figures when this happens tend to not be closed shapes,
as shown in Figure 4a. We have included both results in the table to be able
to compare the increase in reward, at the cost of losing the closing property
for the shape.

The angles used in the training for B in figure 4 are increments of 30 degrees
(0, 30, 60, 90, 120, 150, 180), and a fixed length of 1. Meanwhile, the ones used
for C are those same angles but adjusted (≈ 26 degrees), and using multiple
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lengths. As it can be observed, adjusting the angles and lengths to fit with a
specific periodicity within the canvas produces a result that achieves a better
score compared to the base angles used, 4.24 vs 4 respectively. Both results
provide a high increase in the Si density compared to the results achieved in
[25].

3.1.1 Evaluating the RL-model

Since the focus of this paper is the newly created simulation environment,
we provide proof of the importance of only allowing legal actions. This incor-
porates knowledge about the environment, making it easier for the agent to
learn the best possible actions. For comparison, we create an environment that
does not filter out illegal actions. Every time an illegal action is played, the
episode stops, and the reward at this state is returned. We call this environment
”Unmasked actions Environment”. We mark the environment only allowing
legal actions, but acting randomly as ”Masked Random Environment”.

Figure 3k shows that the environment which does not filter out illegal
actions achieves the final reward in 50 more episodes compared to the envi-
ronment of the masked action. And since we are considering fewer actions,
the masked environments process each episode faster than the random agent,
which leads to a faster time to process each episode. Considering the relative
simplicity of the action space used for this experiment (i.e., only one single
edge length), it shows that an RL agent becomes even more valuable, if not
inevitable, when trying to tackle problems with even larger phase spaces (i.e.,
more possible actions).

Fig. 4 Results of training with different input parameters. (a,e) use 30-degree increments
input [0, 30, 60, 90, 120, 150, 180] and a single length, (b,f) use the same increments with
adjusted angles and multiple lengths. Our baseline score is 2.00.(c,g) are pictures of the as-
fabricated PDMS lattices based on the non-frustrated and frustrated designs.(d,h) are their
transformed geometries after swollen by hexane, which agrees with our model’s predictions.
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12 Reinforcement Learning-based Design of Shape-changing Metamaterials

3.2 Experimental validation

To validate the RL-optimized metamaterial design, we use additive manufac-
turing techniques to fabricate polydimethylsiloxane (PDMS) structures and
emulate the swelling behaviour by immersing the structures in hexane. 2D
PDMS lattices are fabricated based on the non-adjusted designs in Figure
4a and manufactured in Figure 4e. Acrylic-based templates with the desired
geometries are 3D-printed using a Formlab Form 3 stereolithographic (SLA)
printer and Formlab Clear V4 resin. Precursors of the SYLGARD 184 two-part
PDMS kit are mixed and then poured into the template. After curing at 80C
for two hours, the PDMS lattices were removed from the template. For the
non-frustrated design, the node spacing is 20mm in the x direction and 10mm
in the y direction. For the frustrated design, the node spacing is 26mm in the
x direction and 13mm in the y direction. For both designs, the beam width
is 2mm, and the beam thickness in the z direction is 4mm, and the nodes are
approximated by doughnut-shaped rings with an inner diameter of 2mm and
an outer diameter of 6mm as shown in Figure 4e and Figure 4g. Before the
swelling experiments, the PDMS lattices are mounted onto a 3D-printed base
plate with vertical posts that are inserted into all doughnut-shaped nodes. In
doing so, the lateral positions of all the nodes in the PDMS lattices are con-
strained but the nodes are free to rotate in the right-handed or left-handed
directions. During the swelling experiments, the PDMS lattices mounted on
the base plates are immersed in hexane for 10min. The swollen PDMS lat-
tices are then taken out of hexane so that their pictures can be taken with
better contrast, as shown in Figure 4d and Figure 4h for the non-frustrated
case and the frustrated case respectively (more detail are reported in the Sup-
plementary Information and Figure S3). In this way, we have demonstrated
the RL-optimized metamaterial designs would behave largely as predicted in
physical experiments. The only discrepancy from the RL model is the buckling
directions in the frustrated case are opposite, which will be discussed below.

4 Discussion

The discrepancy between the RL model and the swelling experiment can be
attributed to the simplified physical parameters and constitutive equations
used in the model, which we intentionally keep simple to demonstrate the
general usage of the methodology. The reward in the current RL model is based
only on the structural deformation of the beams, whose parameters have been
obtained from Ref. [25], with the condition that two beams cannot touch each
other and that the shape of the lithiated beam is simplified to be sinusoidal.
Figures 4f and 4h indicate that in the solvent-swollen PDMS lattices, the
turning point of buckled beams, where the radius of curvature is the smallest, is
not at the mid-point of the beams, deviating from the sinusoidal shape used in
the RL model. Another difference between the model and the polymer lattice
experiment is that the nodes of the lattices are approximated by doughnut-
shaped rings that are free to rotate when stationary vertical posts on the
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Reinforcement Learning-based Design of Shape-changing Metamaterials 13

substrate are inserted into them. Our model doesn’t consider the deformation
of the doughnut-shaped nodes, which are clearly stretched and deformed after
swelling in Figures 4f and 4h.

Even in our simplified model, the predicted behaviour is accurate for the
non-frustrated case, where all beams deform by Mode-I buckling in a cooper-
ative way to minimize the elastic energy of the system. In the frustrated case,
the frustrated beams deform by Mode-II buckling with a much higher elastic
strain, which brings the energy penalty of each node to rotate in one direc-
tion to be very close to that in the other direction. Only in this situation,
finer details of the deformation geometry and mechanical states start to play
a noticeable role resulting in all nodes rotating in opposite directions as the
RL model predicts. Even in this case, the model is largely correct because the
two longer beams in the lattice deform by Mode-I (i.e., non-frustrated) and
the shortest beam deforms by Mode-II buckling (i.e., frustrated) in both the
experiment and the model.

The details of the RL model can be modified to improve its accuracy in
the current nanostructured Si anode cases, but the framework used to opti-
mize shape-changing metamaterials remains the same and can be adapted for
various other metamaterials applications. For example, the deformed shape of
the beams can be formulated more accurately using established solid mechan-
ics beam theories. The exact structural and energetic response of the beam to
lithiation or solvent-induced swelling could also be included by modelling the
beams at the continuum level, through Finite Element Models (FEM). This
would contribute to a more accurate description of the shape-changing canvas
as well as include energetic information in the modelling, which can become
critical when frustrated beams are present.

5 Conclusion

In this work, we have implemented a reinforcement learning method to ratio-
nally design shape-changing metamaterials using nano-structured Si anodes
as a demonstration case. The RL model places pre-defined actions (nodes and
beams) in an empty canvas optimising a multi-component reward function,
which considers not only maximum theoretical capacity but also the structural
response to electrochemical cycling—changes in beam shape during lithiation
and delithiation processes. The efficiency of different RL environments (in
which actions were selected randomly or filtered) has been evaluated and com-
pared. The model discovered a new structure which can improve the capacity
to 2.5 times that of the nanostructured Si anode reported in Ref. [25]. To val-
idate if the RL-predicted metamaterial designs are indeed physical, we have
used an additive manufacturing approach to create polymer lattices based on
such designs and demonstrated largely identical shape-changing behaviours in
response to solvent-induced swelling with the exception of the node rotating
direction in the RL-designed frustrated lattices. The RL-based topology opti-
mization framework used in this work can be adapted to predict improved
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14 Reinforcement Learning-based Design of Shape-changing Metamaterials

metamaterial designs based on specific demands and the associated rewards
for a wide variety of future applications. For example, adaptive membranes can
be designed to filter or release objects of specific sizes on demand, and their
structures can be optimized by applying the RL model to increase efficiency
and size selectivity. Tunable phononic or photonic crystals can also be designed
to control the propagation of acoustic or optical wave of specific frequencies
using the RL model. Complex structural transformation can be simplify into
reduced-order steps such as node rotation and beam bending used in this work
and then incorporated into the corresponding, computationally efficient RL
models with application-specific rewards.
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[16] Acerce, M., Akdoğan, E.K., Chhowalla, M.: Metallic molybdenum disul-
fide nanosheet-based electrochemical actuators. Nature 549(7672), 370–
373 (2017)

[17] Jager, E.W., Inganas, O., Lundstrom, I.: Microrobots for micrometer-
size objects in aqueous media: potential tools for single-cell manipulation.
Science 288(5475), 2335–2338 (2000)

[18] Sydney Gladman, A., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L.,
Lewis, J.A.: Biomimetic 4d printing. Nature materials 15(4), 413–418
(2016)

[19] Jin, D., Chen, Q., Huang, T.-Y., Huang, J., Zhang, L., Duan, H.:
Four-dimensional direct laser writing of reconfigurable compound micro-
machines. Materials Today 32, 19–25 (2020)

[20] He, X., Aizenberg, M., Kuksenok, O., Zarzar, L.D., Shastri, A., Bal-
azs, A.C., Aizenberg, J.: Synthetic homeostatic materials with chemo-
mechano-chemical self-regulation. Nature 487(7406), 214–218 (2012)

[21] Meza, L.R., Zelhofer, A.J., Clarke, N., Mateos, A.J., Kochmann, D.M.,
Greer, J.R.: Resilient 3d hierarchical architected metamaterials. Pro-
ceedings of the National Academy of Sciences 112(37), 11502–11507
(2015)

[22] Ma, W., Cheng, F., Liu, Y.: Deep-learning-enabled on-demand
design of chiral metamaterials. ACS Nano 12(6), 6326–6334 (2018)
https://doi.org/10.1021/acsnano.8b03569. https://doi.org/10.1021/
acsnano.8b03569. PMID: 29856595

[23] Zhelyeznyakov, M.V., Brunton, S., Majumdar, A.: Deep learn-
ing to accelerate scatterer-to-field mapping for inverse design
of dielectric metasurfaces. ACS Photonics 8(2), 481–488 (2021)
https://doi.org/10.1021/acsphotonics.0c01468. https://doi.org/10.1021/
acsphotonics.0c01468

[24] Xia, X., Spadaccini, C.M., Greer, J.R.: Responsive materials architected
in space and time. Nature Reviews Materials 7(9), 683–701 (2022)

[25] Xia, X., Afshar, A., Yang, H., Portela, C.M., Kochmann, D.M., Di Leo,
C.V., Greer, J.R.: Electrochemically reconfigurable architected materials.

Page 16 of 18Journal of Materials Chemistry A

https://arxiv.org/abs/https://doi.org/10.1021/acsnano.8b03569
https://doi.org/10.1021/acsnano.8b03569
https://doi.org/10.1021/acsnano.8b03569
https://arxiv.org/abs/https://doi.org/10.1021/acsphotonics.0c01468
https://doi.org/10.1021/acsphotonics.0c01468
https://doi.org/10.1021/acsphotonics.0c01468


Reinforcement Learning-based Design of Shape-changing Metamaterials 17

Nature 573(7773), 205–213 (2019)

[26] Overvelde, J.T.B., de Jong, T.A., Shevchenko, Y., Becerra, S.A.,
Whitesides, G.M., Weaver, J.C., Hoberman, C., Bertoldi, K.: A three-
dimensional actuated origami-inspired transformable metamaterial with
multiple degrees of freedom. Nature Communications 7 (2016). https:
//doi.org/10.1038/ncomms10929

[27] Choi, W.J., Cheng, G., Huang, Z., Zhang, S., Norris, T.B., Kotov, N.A.:
Terahertz circular dichroism spectroscopy of biomaterials enabled by
kirigami polarization modulators. Nature materials 18(8), 820–826 (2019)

[28] McDowell, M.T., Lee, S.W., Nix, W.D., Cui, Y.: 25th anniversary arti-
cle: Understanding the lithiation of silicon and other alloying anodes
for lithium-ion batteries. Advanced Materials 25(36), 4966–4985 (2013).
https://doi.org/10.1002/adma.201301795

[29] Benedetti, M., du Plessis, A., Ritchie, R.O., Dallago, M., Razavi, S.M.J.,
Berto, F.: Architected cellular materials: A review on their mechanical
properties towards fatigue-tolerant design and fabrication. Materials Sci-
ence and Engineering: R: Reports 144, 100606 (2021). https://doi.org/
10.1016/j.mser.2021.100606

[30] Zhelyeznyakov, M.V., Brunton, S., Majumdar, A.: Deep Learning to
Accelerate Scatterer-to-Field Mapping for Inverse Design of Dielectric
Metasurfaces. ACS Photonics 8(2), 481–488 (2021). https://doi.org/10.
1021/acsphotonics.0c01468. Accessed 2022-06-06

[31] Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J.W., Songhori, E., Wang,
S., Lee, Y.-J., Johnson, E., Pathak, O., Nazi, A., et al.: A graph placement
methodology for fast chip design. Nature 594(7862), 207–212 (2021)

[32] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple
heterogeneous social networks. In: Proceedings of the 22nd ACM Interna-
tional Conference on Information & Knowledge Management, pp. 179–188
(2013)

[33] Simm, G., Pinsler, R., Hernández-Lobato, J.M.: Reinforcement learn-
ing for molecular design guided by quantum mechanics. In: International
Conference on Machine Learning, pp. 8959–8969 (2020). PMLR

[34] St̊ahl, N., Falkman, G., Karlsson, A., Mathiason, G., Bostrom, J.: Deep
reinforcement learning for multiparameter optimization in de novo drug
design. Journal of chemical information and modeling 59(7), 3166–3176
(2019)

[35] Watkins, C.J.C.H.: Learning from delayed rewards (1989)

Page 17 of 18 Journal of Materials Chemistry A

https://doi.org/10.1038/ncomms10929
https://doi.org/10.1038/ncomms10929
https://doi.org/10.1002/adma.201301795
https://doi.org/10.1016/j.mser.2021.100606
https://doi.org/10.1016/j.mser.2021.100606
https://doi.org/10.1021/acsphotonics.0c01468
https://doi.org/10.1021/acsphotonics.0c01468


18 Reinforcement Learning-based Design of Shape-changing Metamaterials

[36] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Belle-
mare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G.,
et al.: Human-level control through deep reinforcement learning. nature
518(7540), 529–533 (2015)

[37] Tokic, M., Palm, G.: Value-difference based exploration: Adaptive control
between epsilon-greedy and softmax. In: Bach, J., Edelkamp, S. (eds.) KI
2011: Advances in Artificial Intelligence, pp. 335–346. Springer, Berlin,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24455-1 33

[38] Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with
double q-learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30 (2016)

[39] Lin, L.-J.: Reinforcement Learning for Robots Using Neural Networks.
Carnegie Mellon University, ??? (1992)

[40] Castelli, I.E., Arismendi-Arrieta, D.J., Bhowmik, A., Cekic-Laskovic, I.,
Clark, S., Dominko, R., Flores, E., Flowers, J., Frederiksen, K.U., Friis,
J., Grimaud, A., Hansen, K.V., Hardwick, L.J., Hermansson, K., Königer,
L., Lauritzen, H., Cras, F.L., Li, H., Lyonnard, S., Lorrmann, H., Marzari,
N., Niedzicki, L., Pizzi, G., Rahmanian, F., Stein, H., Uhrin, M., Wen-
zel, W., Winter, M., Wölke, C., Vegge, T.: Data management plans:
the importance of data management in the BIG-MAP project. Batteries
&amp Supercaps 4(12), 1803–1812 (2021). https://doi.org/10.1002/batt.
202100117

Page 18 of 18Journal of Materials Chemistry A

https://doi.org/10.1007/978-3-642-24455-1_33
https://doi.org/10.1002/batt.202100117
https://doi.org/10.1002/batt.202100117

