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Abstract 

 
By looking back on the history of Raman Optical Activity (ROA), the present article shows that the 
success of this analytical technique was for a long time hindered, paradoxically, by the deep level of 
detail and wealth of structural information it can provide. Basic principles of the underlying theory 
are discussed, to illustrate the technique’s sensitivity due to its physical origins in the delicate 
response of molecular vibrations to electromagnetic properties. Following a short review of 
significant advances in the application of ROA by UK researchers, we dedicate two extensive sections 
to the technical and theoretical difficulties that were overcome to eventually provide predictive 
power to computational simulations in terms of ROA spectral calculation. In the last sections, we 
focus on a new modelling strategy that has been successful in coping with the dramatic impact of 
solvent effects on ROA analyses. This work emphasises the role of complementarity between 
experiment and theory for analysing the conformations and dynamics of biomolecules, so providing 
new perspectives for methodological improvements and molecular modelling development. For the 
latter, an example of a next-generation force-field for more accurate simulations and analysis of 
molecular behaviour is presented. By improving the accuracy of computational modelling, the 
analytical capabilities of ROA spectroscopy will be further developed so generating new insights into 
the complex behaviour of molecules. 
 
Introduction 
 
Raman optical activity (ROA) spectroscopy is a powerful technique for the conformational analysis of 
chiral molecules. This chiroptical method measures small differences in the Raman scattering of left 
and right circularly polarised light of chiral systems.1,2 ROA can be instrumental in the treatment of a 
great many biological and chemical problems, such as structure elucidation, conformational analysis, 
and the assignment of absolute configuration. ROA has been shown to be particularly useful for the 
study of systems where traditional biological structure determination techniques are not applicable. 
For example, ROA can be applied to molecules that do not easily form crystals, so are difficult to 
study by X-ray diffraction, or have conformational motions on timescales not easily detectable by 
NMR.3-5 Advances in instrumentation have been of great importance for the development of ROA 
but this technique has also significantly benefited from the inclusion of computational modelling. 
With advancements in modelling it has become routine to simulate the ROA spectra of small to 
medium size systems. Great complementarity between experiment and theory can be realised, as 
comparison of simulated and experimental spectra can offer structural insights and reveal 
information on molecular conformations, which is not always available from experiment alone. In 
turn, the incredible sensitivity of ROA to molecular structure can be used as a gold standard in force 
field design and the modelling of solvent effects. 
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This mutually beneficial relationship between the experimental and theoretical aspects of ROA 
spectroscopy creates a very powerful set of analytical tools. This offers an experimental technique 
with an unrivalled sensitivity to chirality,6 combined with the great amount of detail at the molecular 
level available through computational modelling. These computational tools aid analysis by 
simulating spectra that can be used to confirm structural parameters, understand the vibrational 
nature of observed bands, and give vital information on conformational dynamics. As ROA can be 
utilised as a solution structure technique it has great applicability for biomolecular systems, which 
have strong interactions with the aqueous environment. As such, any model needs to carefully 
consider the effect a solvent will have on the results of calculations. Fortunately the current state of 
modern computational modelling allows for the addition of a significant number of explicit solvent 
molecules, which has been shown to result in a significant increase in the accuracy of results.7 
 
ROA was first predicted in 1969 in Oxford by Atkins and Barron8 and was then first observed 
experimentally in 1972 by Barron, Bogaard and Buckingham at Cambridge.2 The sensitivity of ROA to 
molecular stereochemistry was then demonstrated in a series of studies by Barron and colleagues at 
the University of Glasgow. It is not the purpose of this review to discuss this body of work, and 
interested readers are directed to a number of relevant reviews.9-11 In summary, these studies 
established the direct correlation between the manner in which vibrational modes sense local 
stereochemistry and the signs of ROA band patterns, and then showed that ROA spectra are incisive 
probes for complex higher order structures. For example, studies performed by spectroscopists at 
Manchester and the Diamond Synchrotron showed that ROA can characterise the structures 
adopted by glycosaminoglycans,12 complex interactions between mucin glycoproteins,13 DMSO-
induced unfolding of proteins,14 as well as identified how changes in local flexibility of the protein 
monellin correlate with reduced sweet-taste perception.15 
 
Basic Theory of ROA 

 
The origin of scattered light is characterised by the oscillating electric dipole, magnetic dipole, and 
electric quadrupole moments induced by the incident light wave. In the far from resonance 
approximation the electric dipole, magnetic dipole, and electric quadrupole operators are given by 
equations 1, 2, and 3, respectively; 
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where a particle i at a distance of ri, has the charge ei, mass mi, and linear momentum pi. The Greek 
subscripts denote vector or tensor components and can be equal to x, y or z Cartesian coordinates, 

with a repeated Greek suffix denoting Einstein summation over the three tensor components; αβδ  

is the unit second-rank symmetric tensor and αβγε  is the unit third-rank antisymmetric tensor and is 

equal to 1 for cyclic permutations of xyz and -1 for anti-cyclic permutations, e.g. xzy, zyx etc. The 
Kronecker delta, denoted δαβ, is a function of two variables that equals 1 if the variables are the 
same and equals 0 otherwise. 
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Molecular multipole moments and the quantum mechanical expressions for the molecular property 
tensors can be defined by the fields and field gradients evaluated at the molecular origin. The 
molecular property tensors can be extracted from time-dependent perturbation theory to give 
equations 4, 5, and 6. 
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where ααβ is the electric dipole – electric dipole polarisability tensor, G’αβ is the electric dipole – 
magnetic dipole optical activity tensor, and Aαβγ is the electric dipole – electric quadrupole optical 
activity tensor. The Re terms correspond to the real part, and Im to the imaginary part, of these 
expressions. In equations 4, 5, and 6, n and j represent the initial and virtual intermediate states, 
respectively, and ωjn is the angular frequency separation. Averaging the polarisability - polarisability 
and polarisability - optical activity tensor component products over all orientations of the molecule 
generates products that are invariant to axis rotations. These are shown in equations 7 and 8 for the 
isotropic invariants and 9, 10, and 11 for the anisotropic invariants.16,17 
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A quantitative experimental ROA observable that can be useful for biomolecular analysis is the 
dimensionless circular intensity difference (CID), introduced by Barron and Buckingham, as given by 
equation 12;1 

 

)()( LRLR IIII +−=∆  (12) 

 
where IR  and IL are the scattered Raman intensities of the right and left circularly polarised light, 
respectively. Notation of equation 12 relates to incident circular polarisation (ICP) ROA; for scattered 
circular polarisation (SCP) ROA, the R and L superscripted labels shown above are replaced by 
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equivalent subscripted labels. Within the far-from-resonance approximation, the ICP and SCP ROA 
measurements provide equivalent information, giving rise to identical spectra, with the CID 
expressions for the two forms also being equivalent. The experimental scattering angle can be varied 
and CID expressions can be written for the different angles in terms of contributions of the three 
molecular property tensors, ααβ, G’αβ, and Aαβγ. 
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Equation 13 shows the CID expression for a forward scattering geometry and equation 14 shows the 
expression for a backscattering geometry. Where a molecule is composed of idealised axial 
symmetric achiral bonds, a situation where β(G’)2=β(A)2 and αG’=0, ROA is generated entirely by 
anisotropic scattering and the forward scattering and backscattering CID expressions are reduced to 
equations 15 and 16, respectively.18,19 
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This shows that the ROA intensity is maximised in the back scattering geometry. As Raman scattering 
intensities are equal for the forward and backwards geometries, this increase in the ROA signal 
relative to the Raman shows that this is generally the best experimental strategy. A more extensive 
analysis of the theory of ROA can be found in one of several reviews on this subject.20-24 
 
Instrumentation and Experiment 

 
ROA can be measured as a small circularly polarized component in either the incident or scattered 
beams.8,25,26 Other ROA measurement strategies are possible and are described elsewhere.27-30 A 
simple bond polarisability model has shown that a backscattering geometry is essential for the 
routine measurement of ROA spectra of biomolecules.31,32 Backscattering ROA spectra may be 
acquired using a number of different measurement strategies, with the ICP and SCP approaches 
being by far the most commonly used. A backscattering ICP measurement strategy was utilized in 
Glasgow from the 1970s and these instruments were responsible for most reported ROA spectra 
until the first few years of the 21st century. A detailed description of the optical layout of the main 
version of the Glasgow backscattering ICP ROA instrument operating at 532 nm can be found 
elsewhere.33 Since 2003, a new design of ROA instrument based on the SCP strategy34 has been 
commercially available and is now the most widely used type of ROA spectrometer worldwide. 
 
As stated above, in the absence of electronic resonance effects the ROA spectra obtained from these 
different instruments are directly comparable. In each case, laser powers used for biological 
molecules are typically from 1-1.4 W (measured at the laser source), concentrations usually are in 
the range of ~30-100 mg/ml for proteins and nucleic acids while those of intact viruses and complex 
polysaccharides are ~5-30 mg/ml. For smaller molecules concentrations are usually in the range of 
50-200 mg/ml. While measurements can be conducted on concentrations lower than those 
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mentioned here, the higher the concentration the faster the measurement will be. Under these 
conditions ROA spectra over the spectral range of ~300-2000 cm-1 are typically obtained in minutes 
to a few hours for small molecules, ~5-24 hours for proteins and nucleic acids, and ~1-4 days for 
intact viruses and complex carbohydrates. 
 
History of Computational ROA 
 
Whilst the definitive theory of ROA was developed in 1971,1 and the first experimental spectrum was 
recorded in 1972,2 it took until 1989 for the first calculated results to be published.35 This was 
reported by Polavarapu and co-workers, studying the molecule (+)-R-methylthiirane with Hartree 
Fock (HF) and the 6-31G* basis set, resulting in reasonable agreement with experimental results, 
with the exception of generally overestimated intensities. Many of the publications in the early years 
of computational ROA spectroscopy came from the groups of Barron and Polavarapu, who produced 
experimental spectra and ab initio calculations on a wide range of small organic molecules, including 
three-membered rings,36-38 five-membered rings,39 six-membered rings,40 alanine,41 and tartartic 
acid.42 The computational limitations at the time meant that it was difficult to advance beyond 
systems of this size and they were studied using HF approaches with relatively small basis sets. One 
of the earliest calculations that advanced beyond the level of HF was also reported by Polavarapu et 

al.,43 using MP2 for the force field calculation in the study of substituted oxiranes. However, issues 
arose where different oxiranes produced results of varying quality for the same level of theory. The 
authors brought up the question of basis set dependence on the sensitivity of the normal mode 
composition and Cartesian polarisability. 
 
With the increase in computing power the capability of calculating ROA spectra also increased, with 
access to larger basis sets and more advanced methods than those used in the early studies. As well 
as these improvements, deficiencies in the calculations were also able to be addressed. Helgaker et 

al.44 examined issues in the calculation of magnetic properties with finite basis sets, causing errors in 
the calculation of the electric dipole – magnetic dipole tensor. Magnetic properties are dependent 
on the gauge origin of the magnetic vector potential. Hence, as a solution, gauge-invariant atomic 
orbitals (GIAOs) were used, as they yield intensities independent of the gauge origin. 
 
Density functional theory (DFT) methods are widely used in computational chemistry and have a 
wide range of applications. As such, they have become the standard approach in the calculation of 
ROA intensities. The first reported studies using DFT were from Ruud et al.,45 using the hybrid 
functional B3LYP with a combination of Pople and Dunning basis sets. Results for methyloxirane, α-
pinene, and trans-pinene were compared to those using HF, as well as experiment. Spectra 
calculated using DFT were found to be superior to the earlier methods, and a significant 
improvement in the calculation of harmonic vibrational frequencies was also noted. 
 
In one of the early computational ROA studies by Polavarapu in 1990,46 the author noted that ROA 
calculations were hindered by the need to obtain the derivatives of the electric dipole – magnetic 
dipole polarizibility tensor. As no analytical differentiation approaches were available, numerical 
differentiation was used, complicating the computations and causing much greater computational 
expense. It was also noted that the development of an analytical method to evaluate the derivatives 
would greatly facilitate the ROA prediction of larger molecular systems. Early analytic protocols 
originated in 2007 from Liegeois et al.47 with an analytical time-dependent HF algorithm for 
calculation of the derivatives of the electric dipole – magnetic dipole polarasibillity tensor. This work 
allowed for the first time fully analytical evaluation of the three frequency-dependent invariants 
needed for ROA calculation. Although this method utilised non-London orbitals, resulting in 
erroneous gauge origin dependence, further advancements have since been made allowing for the 
use of GIAOs and DFT.48-51 
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Method and Basis Set Dependence 

 
The advancements in theory as well as the general advancements in computing mean it is now 
routinely possible to calculate the ROA spectra of small to medium sized systems. However, an 
important facet still to consider is the choice of method and basis set, together referred to as the 
level of theory. As mentioned earlier, the question of basis set dependence was posed in some of the 
early publications and as such several benchmark studies have been undertaken to determine the 
most suitable basis sets for performing calculations. 
 
Early studies by Pecul and Rizzo52 examined the basis set dependence of ROA using a selection of 
Dunning’s correlation consistent basis sets, in augmented and non-augmented forms. Using MCSCF 
methods they found aug-cc-pVDZ to be suitable for qualitative analysis but more importantly they 
noted that basis sets with diffuse functions were able to reproduce experimental spectra more 
accurately than those without. This was also noted by Hug,53 and that description of the diffuse part 
of the electron distribution on hydrogen nuclei was essential for basis sets used for ROA calculations. 
This led to a more extensive benchmark study by Zuber and Hug,54 which also led to the 
development of a new basis set, rDPS. This basis set is in the form 3-21++G, with semidiffuse p 
functions on hydrogens, with an exponent of 0.2. In their tests, rDPS performed very well, giving 
better results than a selection of Pople and Dunning basis sets, with only aug-cc-pVDZ outperforming 
it against the benchmark Sadlej basis set. 
 
The most recent benchmark study was carried out by Cheeseman and Frisch,55 where they examined 
the basis set dependence of the ROA tensor invariants and force field calculations separately. This 
study took advantage of the fully analytical derivative methods as well as examining the onestep and 
twostep procedures (2n+1 and n+1 algorithms, respectively) as described by Ruud and 
Thorvaldsen.20 The twostep approach allows for the calculation ROA tensor invariants at a different 
level of theory than the optimisation and force field calculation, whereas the onestep approach 
calculates everything at the same level of theory. Cheeseman and Frisch noted that the influence of 
the basis set is different in the calculation of the Raman/ROA tensor invariants compared to the 
force field calculation and concluded from this that the twostep procedure is the more efficient, 
particularly for large molecules. A selection of basis set combinations for twostep calculations, based 
on system size, was also reported. For intermediate-sized system aug(sp)-cc-pVDZ//cc-pVTZ was 
suggested, while for large systems rDPS//6-31G* for the ROA tensor invariant and force field 
calculations, respectively. 
 
There are comparatively fewer benchmark studies that explore the dependence on the method 
rather than on the basis set. Reiher et al.56 presented one of the first studies with a combined basis 
set and DFT functional. Local density approximation, generalised gradient approximation, and hybrid 
DFT methods were explored using SVWN, BLYP, and B3LYP, respectively. Results showed that BLYP 
and B3LYP outperformed SVWN. 
 
A more extensive study was carried out by Danecek et al.57 using a mix of 23 pure and hybrid DFT 
functionals, as well as HF and MP2. Comparison between experimental spectra and those calculated 
with the DFT methods, for alanine and proline zwitterions, found that the hybrid functionals 
generally performed best, noting that B3LYP and B3PW91 performed particularly well. Sebek et al.58 
also noted that, overall, the B3LYP functional provides a well-balanced model between accuracy and 
cost, as such this functional has been widely used in recent computational ROA studies. 
 
The calculation of ROA spectra is now possible through several commercially available programs, 
including Gaussian03,59 Gaussian09,60 and the Amsterdam Density Functional code (ADF).61 
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Gaussian09 also includes the necessary subroutines for analytical derivatives of all the required ROA 
tensors. As well as these packages, there are several other programmes for ROA calculation 
including Dalton,62 CADPAC,63 and SNF.64 
 
Solvent Models 
 
An important aspect to consider when carrying out ab initio simulations is the inclusion of solvent. 
The lack of a solvent model, particularly when carrying out calculations on biologically relevant 
molecules, can lead to large errors in the simulated spectra.65,66 As such, solvent inclusion has 
become routine in many ab initio calculations, leading to better descriptions of the dynamics and 
energetics of experimentally studied systems. It is of particular importance in the simulation of ROA, 
because direct interactions with solvent molecules can have a drastic effect on the spectra, 
particularly for vibrational modes in the low wavenumber region.67 
 
The inclusion of solvent in the ab intio calculation of ROA spectra can be carried out in two ways, 
broadly defined as implicit and explicit solvation. Implicit solvent models place the solute within a 
cavity in a uniform polarisable medium with a dielectric constant. There are two widely used implicit 
solvent models called PCM68 and COSMO,69 which treat the solvent as a dielectric and a conductor, 
respectively. 
 
The explicit solvation approach includes explicit solvent molecules in the ab initio calculation, which 
can be modelled at several different levels of theory. A small number of solvent molecules can be 
added and treated at the quantum mechanics level along with the solute, if the solvent molecule is 
relatively small, such as water. It is also possible to include large numbers of solvent molecules and 
model them using hybrid quantum mechanics / molecular mechanics (QM/MM) methods. This 
approach treats the solute at the QM level and the solvent with a computationally much cheaper 
molecular mechanics approach. Electrostatic embedding can also be included for more accurate 
calculation by incorporating the MM charges in the QM Hamiltonian. Such an approach is able to 
model systems with large solvation shells, with solvent molecules numbering in the hundreds. 
 
It is also possible to combine implicit and explicit solvation approaches. When carrying out 
calculations on systems with small numbers of explicit molecules it is trivial to include a continuum 
method. Recent work by Biczysko et al.

70 has also explored the possibility of incorporating implicit 
solvent models within QM/MM frameworks. 
 
The suitability of the solvation approach used depends greatly on the molecular property of interest. 
Implicit models offer reasonable accuracy for energy and structure calculations, with a minimal 
increase in computational expense compared to gas phase calculations.71,72 However, the accuracy 
of vibrational frequencies increases less from the gas phase to an implicit solvent model and a small 
number of explicit water molecules has been shown to have a dramatic effect on calculated spectra, 
resulting in much better agreement with experiment.65,73 

 
The addition of explicit solvent molecules to a system can present issues, however. The simplest 
approach to add solvent molecules is ad hoc solvation, where the solvent is added manually to 
regions of each of the molecular conformers, such as water molecules being added to the polar 
groups of a biomolecule. Studies have shown that this approach can offer significant improvement in 
the reproduction of several features within ROA spectra.74,75 However, this approach does have a 
shortcoming in that systems may converge very slowly to an optimised geometry, as a result of the 
shallow nature of the potential energy surface.57,75 
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Given the importance of including the major conformers of a molecule for the simulation of ROA 
spectra, a more practical approach for the addition of solvent molecules is a dynamic method. The 
use of molecular dynamics (MD) simulations offers the benefits of being able to obtain accurate 
solvated structures, closer to optimised geometries, as well as giving valuable conformational 
information. 
 
Several recently published studies explore the area of implicit and explicit modelling of solvent. 
Hopmann et al.

75 studied the effect solvation had on the Raman and ROA spectra of lactamide and 2-
aminopropanal, using PCM, ad hoc hydration, classical MD, and Car-Parrinello MD. Results showed 
that although the PCM gave basic conformational information, energies and ROA intensity patterns, 
the inclusion of explicit solvent provided better agreement with experiment. Inclusion of at least ad 

hoc hydration was recommended and it was noted that Car-Parrinello MD gave better agreement 
than classical MD. However, the additional computational cost of ab initio Car-Parrinello MD might 
mean it is not possible to fully sample the conformational space of systems in question. 
 
Cheeseman et al.7 utilised a full MD simulation to model the hydration effects of methyl-β-D-glucose 
for ROA calculation. Carbohydrates are a class of biomolecules that benefit greatly from ROA studies 
as the larger, more complex polysaccharides are inherently difficult to study with traditional 
structural biology techniques. Calculation of ROA spectra is often difficult for these molecules due to 
their high conformational flexibility and the need for accurate solvent modelling. This study 
incorporated solvated structures from the MD trajectories as starting points for the QM/MM 
calculations. The explicitly solvated structures resulted in spectra with excellent agreement with 
experiment, particularly when compared to the PCM models, which offered comparatively poor 
agreement, as shown in figure 1. The authors concluded that the implicitly solvated models fail to 
accurately model the sensitivity of ROA features to hydration effects and that adopting a full MD 
approach to handle the aqueous environment is essential for carbohydrates. 
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Fig. 1. ROA spectra of methyl-β-D-glucose. A) experimental spectrum, B) gas phase calculated 
spectrum, C) PCM calculated spectrum, D) QM/MM explicitly solvated calculated spectrum. 
Modified with permission from reference 7. 
 
Urago et al.76 carried out a similar study to that undertaken above, on a cyclic dipeptide. They found 
good agreement with experiment but found that a large number of MD snapshots were required to 
achieve this, particularly in the 1580-1800 cm-1 region, which required 120 snapshots. In comparison, 
Cheeseman et al. required only 16 snapshots for each of the two conformers for excellent 
agreement across the entire frequency range examined. However, it should be noted that different 
snapshot optimisation approaches were used in these two publications, where Urago et al. used a 
technique analogous to OPTSOLUTE and Cheeseman et al. used OPTALL, as described below. This 
difference in optimisation approach likely results in the difference of number of snapshots required 
for accurate spectral reproduction. 
 
Simulation of ROA Spectra 

 
As a result of the success of the work on carbohydrates carried out by Cheeseman et al.7, we have 
further developed the approach they presented. The protocols have been utilised for successfully 
studying carbohydrates, which as test cases are particularly difficult to study, but could equally be 
applied to any other system of interest with strong solvent interaction. Figure 2 shows the approach 
that we have designed for accurate computation of ROA spectra. 
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In general terms, this approach consists of exploring the configurations accessible to the explicitly 
solvated system, for temperature and pressure conditions similar to experiment. When no reference 
data are available, it becomes crucial to extensively sample the conformational space to obtain 
reliable quantitative information. For flexible molecules such as carbohydrates, the required 
simulation time can then dramatically rise as the space to explore gets more complex and features 
more dimensions. Dynamic sampling was used in our work, but Monte-Carlo methods would be 
appropriate as well. Obviously, for such time-scales, it is an understatement to say that ab Initio MD 
is impractical. Currently, the only alternative is the use of atomistic molecular models based on 
classical mechanics (force-fields). So far, most of these rely on fitting methods, parametrisation, and 
a number of approximations (such as the point-charge description of atomic charge densities, 
neglecting all polarization effects) that may severely limit accuracy and transferability.77,78 A number 
of initiatives and developments are progressing toward maturity and will become available in the 
near future, among them the new generation force-field presented below. In the meantime, special 
care needs to be dedicated to the choice and testing of the optimal molecular model among the 
readily available alternatives. 
 
From the sheer mass of data generated during sampling, it is possible to extract qualitative and 
quantitative information about the energetically favoured configurations. If done carefully, even a 
superficial conformational analysis can yield very helpful data that can be used to lighten the 
computational cost of the subsequent QM/MM computation steps. Indeed, by focusing the selection 
of MD snapshots toward the most probable conformers, in their most average form, one can then 
lighten the subsequent steps by a reduction in the number of snapshots, and optimisation starting 
structures being closer to their energetic minima. Eventually, any quantitative insight on the relative 
occurrence probability of these conformers can be used as weights (represented by arrows of 
different size in figure 2) for the averaging of each snapshot’s spectrum into the final prediction. 
 

 
 
Fig. 2. Schematic of the approach to calculation of ROA spectra, with arrows representing flow of 
data between steps. 
 
The term explicit solvation refers to the inclusion of solvent molecules in the simulation. Although 
implicit solvation models are far less computationally demanding, they rely on a number of 
approximations that have been shown several times to impede the proper description of solvent 
effects the spectroscopic responses of carbohydrates.7,79,80 As a result, we strongly recommend 
sticking to explicit solvation when considering carbohydrates. 
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A possible starting point can be the gas-phase optimised structure of the considered carbohydrate. If 
not readily available from the literature or the Glycam project,81 one can quickly obtain a sufficient 
estimate through optimisation thanks to a force field, or a quantum chemical computation at a low 
level of theory. Afterwards, this isolated molecule has to be immersed in a solvent bath: cubic cells 
of side 30 Å (approximately 900 water molecules) have been a safe choice so far for 
monosaccharides, while remaining relatively cost effective regards computing time.. As interest 
tends to larger systems, this size is expected to evolve accordingly, so that the overall solvent bath 
increases in size with the increasing size of the solutes, as to ensure molecules stay surrounded from 
every side by at least 10 Å of explicit solvent molecules (within a single periodic cell). 
 
Any molecular dynamics or Monte-Carlo computer program with basic features would be suited to 
the task at hand, provided it can handle a carbohydrate-specific force field (such as Glycam82). 
Periodic boundary conditions have to be applied to the cubic cell previously described, thus we 
recommend handling electrostatic interactions with a method adapted to such a system (e.g. Ewald 
Sums or one of its derivatives).77 

 
Special care must be dedicated to bringing the system to proper equilibrium at experimental 
conditions (298K, 1 atm). An explicitly solvated system is likely to be, at first, lying far from its 
minimal energy configuration, depending on the way the system has been prepared and the 
software tool used. In our experience, preliminary optimisation, progressive heating, and force-
capping can sometimes be necessary. Similarly, we recommend letting the cell volume adjust until 
reaching a safe convergence threshold within the NPT ensemble, prior to moving toward production 
simulation (NVT). 
 
In principle, a random sampling of a molecule's dynamic trajectory would provide the time-averaged 
conformational diversity necessary to predict the spectroscopic response.75,76 However, accuracy 
cannot be guaranteed until the sampling coverage reaches statistical significance. Instead, we 
advocate an alternative that aims at reducing the number of MD snapshots to process by QM/MM. 
Indeed, it is possible to maximise the statistical significance of the extracted snapshots by targeting 
the most probable structures, as identified by conformational analysis of the MD trajectory. Since it 
is already necessary to run long simulations (at least 50 ns for a monosaccharide83) to ensure 
exhaustive sampling, the conformer populations can be expected to be reliable enough. As a result, 
it is possible to use ratios between these populations in order to weight the snapshots’ spectra into 
an average spectrum representative of the molecule’s dynamic and complex conformational space. 
 
To conduct a conformational analysis appropriate for our purposes, it is preferable to focus on 
general structural features since slight structural changes are to be expected through the QM/MM 
optimisation. Bond lengths and 3-atom angles are indeed more prone to readjustment and change 
during optimisation, whereas dihedral angles can be expected to be more constrained. The latter 
type of geometrical feature typically describes the orientation of chemical groups and ring 
puckering, which can be expected to be held into place by the environment’s general influence. It is 
unlikely to see dramatic changes during optimisation. 
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Fig. 3. Evolution of the ω dihedral angle (O5-C5-C6-O6) in GlcNAc, a relevant monosaccharide, along 
simulation time. Two grey lines mark the average value for each of the two observable conformers. 
 
In order to scan a geometrical feature's evolution and detect the occurrence of multiple conformers, 
it can be sufficient to plot its value against simulation time, as in figure 3. As we need a clear picture 
of the favoured structures and to define their corresponding domain of values, we recommend to 
push further the analysis and plot histograms, as in figure 4, i.e. the occurrence of the considered 
feature values within regular intervals (bins). Such a graph enables the ability to easily notice any 
overlap between conformers, shoulders or minor structures. Once each conformer’s domain is 
determined, their populations and average values can be accurately calculated. 
 

 
 
Fig. 4. Histogram plot of the occurrence of the ω dihedral angle values in GlcNAc, with bins of 5 
degrees. 
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Once these last data are calculated, they can be used as combinations of target values to filter the 
MD frames and obtain representative snapshots of each conformer. The closer a snapshot assumes 
dihedral values from the conformer’s average, the quicker it can be expected to optimise. 
Furthermore, selecting frames as far from each other in the trajectory ensures that the diversity of 
solvent layer configurations is properly sampled. In cases where it is necessary to include a counter 
ion in the simulation, it is advised to select only frames where the ion is lying as far as possible from 
the molecule of interest. It is still unclear what the ideal number of snapshots is in order to obtain an 
average spectrum in agreement with experiment. Even though good results have been obtained 
with as few as 6 snapshots, the number is likely to scale up with the conformational variety. Further 
investigations are currently in progress to address this concern. 
 
The selection of MD frames, taken from the conformational analysis, is then used as a starting point 
for the QM/MM calculations. The initial step is optimisation of the system. Whilst this may seem 
contradictory, as it results in loss of dynamic information from the MD simulations, it is necessary, 
because the vibrational normal modes and frequencies are only valid for minima on the potential 
energy surface. There are two main approaches used for QM/MM optimisation, carried out using 
ONIOM84 as implemented in Gaussian 09. The first is to optimise the solute and freeze the solvent 
molecules in the MD geometry, which is dubbed OPTSOLUTE. The second approach is allowing the 
entire system to optimise, with full geometrical freedom for all molecules, named OPTALL. The 
second approach, OPTALL, is arguably more accurate as the optimisation of the solvent close to the 
solute creates a better model of solvent-solute interactions when calculating ROA. However, OPTALL 
does have a practical disadvantage as convergence to optimisation is difficult and, on occasion, 
these systems will never reach full optimisation. In these situations the electronic energies of each 
optimisation step oscillate but do not decrease in value overall. However, they can be considered to 
be optimised if the maximum and root-mean-square values of the forces meet the convergence 
criteria of 0.00045 and 0.00030 a.u., respectively, in Gaussian 09. The level of theory recommended 
for optimisation is B3LYP/6-31G* for the solute and AMBER/TIP3P for the aqueous solvent. 
 
After optimisation of the solvent-solute clusters, harmonic frequency calculations are carried out at 
the same level of theory as the optimisation. Using the twostep approach the ROA tensor invariants 
for the optimised clusters can be calculated at a different level of theory to that of the optimisation. 
Based on the benchmark studies of Cheeseman and Frisch55 B3LYP/rDPS is recommended, because 
for large system sizes a combination of 6-31G* and rDPS for force field and ROA calculation, 
respectively, has proven to be successful. 
 
Raman and ROA intensities are obtained from the appropriate combinations of tensor invariants, 
and we have included the ν4 and Boltzmann factors, which are essential for experimental 
comparison.7 The most common experimental ROA set up utilises SCP in the backscattering 
geometry, at a laser excitation of 532 nm, such that spectra can be calculated for these experimental 
parameters. 
 
A simulated spectrum for a single snapshot only takes into account the single conformer present in 
that cluster, as such conformational averaging over multiple snapshots needs to be carried out. 
Averaging can be done with equal weighting for all snapshots if a large number have been taken at 
regular intervals along the trajectory. When conformational analysis has been carried out to find the 
major conformers the more appropriate approach is to weight the snapshots based on the 
conformer populations of the MD simulations. Averaging of the spectra should be carried out with 
the lineshape form (average of the curves) and not the ROA intensities at individual frequencies. 
 
With the steps outlined above it is possible to accurately simulate Raman and ROA spectra for many 
different chiral systems. These calculations account for not only conformational dynamics but also 

Page 13 of 21 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



include explicit modelling of solvent interactions and offer great improvements over implicit solvent 
models. 
 
Analysis of Vibrational Modes 

 
ROA spectra calculated using the approaches above can be used to reveal important information 
about molecular systems. The simplest approach to analysing spectra is a visual comparison 
between experimental and calculated data. This can confirm that the structural and conformational 
data obtained from calculation are correct and can be used as a description of molecules in 
experimental conditions. On top of visual analysis, there are several coefficients that aim to quantify 
the similarity between experimental and simulated spectra.85-87 However, these coefficients have a 
much greater focus on vibrational circular dichroism (VCD), a related chiroptical technique, and 
while applicable to ROA, they have not been extensively tested and as such are not, so far, readily 
used. 
 
One of the most important aspects of ROA analysis is the ability to assign the absolute configuration 
of chiral molecules. While other techniques are more commonly applied to this problem, such as X-
ray diffraction and VCD, ROA possesses considerable advantages for such studies. A study by Haesler 
et al.6 proved this by means of the assignment of absolute configuration of chirally deuterated 
neopentane. This molecule is chemically inert and its chirality results from dissymmetric mass 
distribution, with configuration studies unable to be carried out successfully by any other method 
but ROA. 
 
As ROA exhibits such a high sensitivity to stereochemistry, a large amount of structural and 
vibrational data can be elucidated from the spectral bands. Therefore, it is important to understand 
the origins of the aforementioned bands so that they can be used as identifiers of structural motifs. 
Some spectral regions already have well defined peak assignments, such as in peptides and proteins 
for which there are a number of bands known to be markers of secondary structure. For other 
molecules, such as carbohydrates and chiral transition metal complexes, relatively little insight into 
the details of higher order conformation have been obtained so far. New tools and approaches are 
still needed to explore the vibrational nature of such complex molecules. 
 
Using software such as Gaussview88 or pyvib2,89 calculation output from ROA simulations can be 
visualised in terms of vibrational modes, from which the bands originate. Visualisation of these 
modes can then lead to the assignment of peaks, as exhibited by Cheeseman et al.7 for methyl-β-D-
glucose and Humbert-Droz et al.90 for rhodium trisethylenediamine. This approach can be successful 
but has the disadvantage that assignments are limited to a spectrum simulated from one conformer 
in the gas phase or with implicit solvent models. Individual conformer assignments do offer 
interesting structural information but it is also important to consider origins of bands for spectra 
simulated with the more accurate combined approach, outlined above. In order to do so, it is 
important to consider all the snapshots used to generate the final spectrum. The calculation outputs 
for each individual snapshot’s spectrum can be examined visually, using the software mentioned 
above. Initially, this can be problematic due to the difficulty of visual analysis when explicit solvent 
molecules are present, but options can enable them to be presented in different ways, such as 
wireform, to increase clarity. A preliminary examination of the final spectrum generated from all the 
snapshots should be carried out to determine the features of greatest interest on which to focus 
assignments for. Comparison between the assignments of individual snapshots at the frequency of 
the peaks of interest in the final spectrum can then lead to a final assignment, thus offering analysis 
of systems modelled in environments closer to that observed experimentally. 
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In cases where molecules have very diffuse vibrational modes it can be difficult to assign the most 
important vibrations. Small carbohydrates exemplify this, as nuclear motions arising from most, if 
not all, of the molecule often contribute to many of the observed vibrations. In these situations, for 
each individual mode, the analysis of the molecular displacement data (obtained from calculation 
outputs) can offer deeper insight. Corroboration of the molecular displacements and visual analysis 
can confirm which atoms make either larger or smaller/negligible contributions to the modelled 
vibrations. 
 
Combined, visual analysis and molecular displacement data can enable deeper understanding of 
simulated spectra, and can be used to great effect when assigning peaks in a spectrum generated 
from several solvated snapshots. Better insight can be obtained regarding the origin of these bands 
than is possible from examining individual conformers in the gas phase or with PCM. However, this 
approach is much more laborious and can become much more time-consuming as more snapshots 
are used. Consequently, such an analysis is much more practical when ROA simulations are based on 
an optimally limited number of snapshots, as in the presented MD and quantum approaches that 
incorporates conformational analysis to identify the preferred conformers. 
 
Development of Simulation Approaches 
 
Over the last few decades ROA spectroscopy has matured from being a relatively unknown analytical 
technique to its realisation as a powerful tool for the study of chiral molecules. Figure 2 shows that it 
is possible to carry out accurate simulations of ROA spectra, even for molecules exhibiting high 
conformational flexibility, such as carbohydrates. It also shows that by using combined experimental 
and theoretical methods it is possible to exploit the complementarity of the two approaches. The 
iterative development strategy outlined in figure 2 aims to improve the accuracy of computation and 
this can be achieved through further research in several key areas. One important facet of this 
analytical process that is currently being explored by the authors is the development of more 
accurate force fields. 
 
Biomolecular modelling urgently needs more realistic force field potentials. In order to enhance its 
utility for experimentalists, force field design needs an urgent overhaul because current force-field 
architecture has remained largely stagnant since the 1980s. This overhaul must be guided by both 
rigour and imagination, while respecting the quantum physics ultimately underpinning 
biomoleculare structure and behaviour. A long-term concerted research effort91-93 in this direction is 
currently ongoing. At the core of a future-proof force-field is a maximally energy-transferable atom. 
In this respect, the best atom,94 according to literature evidence, is that defined by Quantum 
Chemical Topology (QCT). 
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Fig. 5. The topological atoms in a configuration of GlcNAc. The atomic boundaries within the 
molecule are parameter-free and appear naturally. The outer boundary coincides with the 0.0001 
atomic unit constant electron density envelope. 
 
In the condensed matter phase QCT atoms are parameter-free three-dimensional fragments of finite 
volume, appearing in the electron density. Figure 5 shows an example in the gas phase, where an 
outer boundary is fixed for visual purposes. This figure shows how QCT naturally partitions a 
carbohydrate derivative into its constituent (topological) atoms. These atoms have sharp 
boundaries, they do not overlap, and they leave no gaps. A change in any nucleus’s position will 
change the electron density and hence the shape of the atoms. Each atomic property (i.e. kinetic 
energy, charge, dipole moment, volume, …) is obtained from the same universal formula, which 
embodies a 3D integral of the atom’s volume. 
 
Combining this QCT partitioning with the universal quantum expression of energy, leads to four 
types of fundamental energy contributions from which all chemical features and phenomena can be 
derived. These fundamental energy contributions are (i) intra-atomic energy, (ii) inter-atomic 
exchange energy, (iii) inter-atomic Coulomb energy and (iv) inter-atomic correlation energy. The first 
energy covers stereo-electronic effects (e.g. rotation barriers, steric hindrance), the second governs 
chemical bonding (including weakly covalent interactions) and (hyper)conjugation effects, the third 
accounts for the ubiquitous electrostatics, while the fourth covers dynamic correlation, which gives 
rise to dispersion. These contributions are all physically well-defined. They are all derived under the 
same Ansatz, both conceptually and computationally. This means that they are properly balanced 
and give the best guarantee to describe energetics of large systems at atomistic level. This approach 
resolves typical debates in force–field design such as the one on the nature of torsion potentials and 
that on the need for dedicated hydrogen bonding terms. The QCT force field does not directly mimic 
energy terms but faithfully expresses what is behind them. It should also be emphasised that the 
Coulomb interaction will be categorically represented by atomic multipole moments.95 This accurate 
representation of the anisotropy, i.e. the deformation of atomic electron densities eliminates the 
inaccuracy of point charges.78 
 
Finally, machine learning captures the response of these four fundamental energy contributions 
upon any change in geometry of the system including its environment. We pioneered the use of 
kriging in the context of potential design.96 The machine learning method of kriging97 best handles 
the complexity98 of distant geometrical changes, and models pivotal polarisation effects. Kriging 
learns the mapping between an atomic quantity (as output, e.g. an atomic multipole moment or self-
energy) and the coordinates of the neighbouring atoms (as input, called features).  
 
There are a number of attractive features to Kriging, the main one being that this machine learning 
method is excellent in handling the high-dimensional complexity of configurational change in 
condensed matter. The four advantages of kriging are: (i) ranking of feature values according to 
importance: chemical insight, (ii) performance scales linearly with the dimension of feature space, 
(iii) trained model is analytical and differentiable, so forces can be computed quickly and accurately 
and, finally (iv) the knowledge of how an environment influences an atom is stored in Kriging 
parameters. The latter act as the trained memory of the atoms. Hence, there is no need to perform 
iterative calculations to self-consistent energies during a MD simulation.  
 
Work is under way at Manchester that aims at demonstrating proof-of-concept that the QCT force 
field (which is still being developed) can be used in a molecular dynamics simulation. The analytically 
obtained forces, acting on the nuclei, and due to the interatomic multipolar electrostatic potential99 
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are currently being implemented in the molecular simulation program DL_POLY_4.100 The forces 
caused by the other fundamental forces are also added and the first ever simulation is expected in 
2015. 
 
Conclusions 
 
Raman optical activity is an analytical technique offering many advantages in terms of structural 
sensitivity that was discovered and extensively developed in the UK. More specifically, recent 
instrumental and computational advancements have opened up an avenue toward the structural 
elucidation of families of molecules that are difficult to study with mainstream analytical techniques. 
However, it is only by working hand-in-hand that experiment and theory will be able to provide the 
methodological overhaul necessary to cope with complex challenges such as carbohydrate solvation, 
or new molecular model development. An approach successfully developed in the UK to address the 
former is presented and discussed, whereas perspectives on the latter open up new opportunities 
for more accurate analysis in chemistry and biology. 
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TOC Graphic Legend: 

 

This review provides the necessary knowledge to accurately model ROA spectra of solvated systems 

and interpret their vibrational characteristics. 
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