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Abstract 

Liver cancer is the fifth most common cancer in men and seventh most common cancer 

in women worldwide. Intoxicant induced liver injury is one of the major causes for severe 

structural damage with fibrosis and functional derangement of the liver leading to cancer in its 

later stage. This report focuses on the minimally invasive autofluorescence spectroscopic (AFS) 

studies on intoxicant, carbon tetrachloride (CCl4) induced liver damage in a rodent model. 

Different stages of liver damages including the reversed stage, on stoppage of intoxicant are 

examined. Emission from prominent fluorophores such as collagen, nicotinamide adenine 

dinucleotide (NADH), flavin adenine dinucleotide (FAD) and variations in redox ratio have been 

studied. A direct correlation between the severity of the disease and the level of collagen and 

redox-ratio was observed. On withdrawal of the intoxicant, a gradual reversal of the disease to 

the normal condition was observed as indicated by the decrease in collagen level and redox-ratio. 

Multivariate statistical technique, principal component analysis followed by linear discriminant 

analysis (PC-LDA) was used to develop diagnostic algorithms for distinguishing different stages 

of liver disease based on spectral features. The PC–LDA modeling on minimally invasive AFS 

dataset yielded diagnostic sensitivities of 93%, 87% and 87% and specificities of 90%, 98% and 

98% respectively, for pair-wise classification between normal, fibrosis, cirrhosis and reversal 

conditions. We conclude that AFS along with PC–LDA algorithm has the potential for rapid and 

accurate minimally invasive diagnosis and detection of structural changes due to liver injury 

resulting from various intoxicants.  
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1. Introduction 

 Liver cancer is the sixth most frequently diagnosed cancer and the third most leading 

cause of cancer deaths worldwide. It is the second and sixth leading cause of cancer deaths 

among men and women respectively. Hepatocellular carcinoma (HCC) is the foremost 

histological subtype among primary liver cancers accounting for 70 to 85% of the total liver 

cancer incidence
1, 2

. Hepatitis C (HPC) virus infections are the prime cause for HCC. Excess 

intake of intoxicants also account for the disease progression. Synergetic interaction between 

HPC infections and intoxicants further increase the chance of HCC incidence
1, 3, 4

.  

Alcohol is the most important and common intoxicant that affects liver. Other than 

alcohol, natural chemicals in plants like alkaloids, fungal toxins and pesticides from 

contaminated food, and high fructose and sucrose containing soft drinks also cause structural 

damages to liver 
3-5

. The commonly used anticancer and antibiotic drugs like Amiodarone, 

Aspirin , Methotrexate can also cause severe hepatotoxicity and chronic architectural damage to 

liver on prolonged use
6
. 

Liver associated with the accumulation of extra cellular matrix (ECM) proteins is the 

prime characteristics of most of the chronic liver diseases. Excess ECM proteins distort the 

hepatic architecture, forming fibrous scar and subsequent development of nodules of 

regenerating hepatocytes
7
. Fatty liver is the earliest stage of liver damage that develops through 
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fibrosis and later progress to cirrhosis which consequently result in HCC in many cases
8, 9

. Liver 

fibrosis and cirrhosis, the stages which precede HCC are both reversible with proper and timely 

medical intervention 
10

. This emphasises the need and importance of early diagnosis of the type 

and severity of hepatic damage when it is in a manageable stage. 

Biopsy followed by histopathology is considered as the gold standard for screening liver 

fibrosis and cirrhosis associated with malignancy. However, the accuracy of this technique 

highly depends on tissue staining and morphological pattern recognition by an expert 

pathologist. Moreover, this technique is time consuming and has limited statistical confidence 

level due to inherent operator variability
11

. Therefore more sensitive screening methodologies are 

necessary to overcome the limited molecular detection capabilities of currently available 

immunohistochemical methods. In vivo and ex vivo modalities of optical techniques such as 

fluorescence, diffuse reflectance, Raman and infrared spectroscopy are able to differentiate 

molecular descriptors within tissue and are emerging diagnostic tools 
11-22

. 

In this study, we demonstrate the potential of AFS as minimally invasive diagnostic tool 

to monitor biochemical changes within the liver tissue. Using this technique, we also 

demonstrate the functional reversal and regeneration capacity of liver after discontinuation of the 

intoxicants. We propose that the expected biochemical changes of collagen, NADH and FAD 

can be evaluated in vivo using optical spectroscopy during liver tissue transformations. For this, 

different stages of liver disease like fibrosis and cirrhosis on intoxicant, CCl4 induced models 

were studied. A group of control animals and a group of animals that showed reversal of the 

diseased stage to normal condition, on stoppage of intoxicant has also been studied. A 

comparison of the results with histological evaluation was also carried out. The exact 
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differentiation between different groups and validation of the dataset using the spectral data was 

done using PC-LDA. 

2. Materials and methods 

2.1. Animal model development 

The animal model for liver damage was developed using a methodology described 

earlier
10, 23

. Institute Animal Ethics Committee of Sree Chithra Tirunnal Institute for Medical 

Sciences and Technology has approved the study (Order no: B 2982011 IX, dated: 19-10-2011). 

20 male Wistar rats (~250 g) were used totally. Animals were grouped as control, fibrosis, 

cirrhosis and reversal with 5 animals in each group. Animals were treated twice a week, 

intraperitoneally, with equal parts (1:1) of CCl4 and olive oil. A concentration of 0.2 ml/100 g of 

body weight of the mixture was injected for the first two weeks followed by a reduced 

concentration of 0.1 ml/100 g for the following weeks. Application of the mixture for 6 and 8 

weeks confirmed development of fibrosis and cirrhosis respectively. Control animals were 

treated with identical volume of olive oil for 8 weeks. One group of animals with cirrhosis was 

followed up for 12 weeks without any further exposure to the intoxicant to study functional and 

morphological reversal of the liver damage. After 3 days of specified duration for the induction 

of fibrosis or cirrhosis, minimally invasive spectral acquisition was carried out. Prior to this, 

animals were anaesthetized using standard dosage of ketamine (70 mg/kg) and xylazine (5 

mg/kg). A small incision was made on the ventral side of the anesthetized animal just outside the 

liver to facilitate in vivo spectral acquisition using the fiber optic probe. 

2.2. Fluorescence spectroscopy instrumentation 
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Spectrofluorometer (Fluorolog-III; Jobin Yvon Inc., USA) with a fiber optic probe was 

used for minimally invasive autofluorescence measurements. The instrument consists of a 450 W 

Xenon arc lamp, photomultiplier tube as detector, a double excitation and a double emission 

monochromator. A bifurcated Y type fiber-optic probe coupled to the sample compartment 

facilitated in vivo measurements. This multimode fiber-optic probe with an outer diameter 1 cm 

consists of illumination fibers and collection fibers with numerical aperture of 0.22. One arm of 

the Y type fiber-optic probe is connected to the source. The desired excitation wavelength was 

selected and transmitted to the site through this arm. The Y-type fiber optic probe originating 

from the spectrometer merges to become a single fiber bundle at the distal end of the fiber which 

is in contact with the animal. The received fluorescence signal is directed back to the 

spectrometer through the other arm of Y type fiber-optic probe. The fiber probe is so designed 

that a central single excitation fiber having a diameter of few micrometers is surrounded by a 

bundle of emission fibers. The diameter of this collective fiber bundle is 0.5 cm and the total 

diameter along with the metallic cladding makes it thicker to 1 cm. Using Datamax
TM

 software 

(Datamax, Round Rock, Texas, USA), excitation wavelength of 320 nm is selected and emission 

spectra in the range 350 to 550 nm with 1 nm increment were recorded from twelve different 

sites of the liver from all animals.  

2.3. Data preprocessing and analysis  

All spectra were baseline corrected and the data in 350 – 550 nm range were extracted. 

These spectra were normalized with respect to the intensity at 460 nm. On the normalized data, 

Gaussian curve fitting was done for precise analysis of peak position, intensity and bandwidth 

(full width at half-maximum) of 380 nm peak. Area under the curve and peak intensity for each 
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group were extracted and subjected to one way analysis of variance (ANOVA) using the 

statistical software SPSS-17 (SPSS Inc., Chicago, Illinois).     

2.4. Optical Redox ratio 

The optical redox ratio was calculated on the basis of emissions from flurophores, NADH 

and FAD using the following equation: 

    

 

where FAD intensity and NADH intensity are the emission intensities at 520 and 460 nm, 

respectively
17, 24

. 

2.5. Multivariate analysis 

Large dimensional spectral space (spectrum ranging from 350 to 550 nm with a data set 

of 200 intensities) often results in inefficiency in execution of conventional statistical analysis 

and clustering algorithms (e.g., soft independent modeling of class analogy, LDA etc.). PCA is 

the best method usually adopted to reduce these spectral data to smaller manageable components 

without losing the useful informations. PCA simplifies the complex multidimensional dataset 

and extract the key variables within the dataset as loadings and scores. These loading vectors and 

PC scores extracted are mutually related to the original spectrum. ANOVA was then used to 

identify the most significant PCs (p < 0.05) for differentiation between different liver tissue 

types. These PC scores are fed to the development of LDA algorithms for multiclass 

classification. LDA determines the discriminant function that maximizes the variances between 

groups while minimizing the variances between members of the same group
12

. 

            FAD intensity 

Optical redox ratio =  ------------------------------------------ 

        NADH intensity + FAD intensity 
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Performance of the diagnostic algorithms provided by PC-LDA models to predict the 

tissue groups was estimated in an unbiased manner using leave-one tissue site-out, cross-

validation method. This method of cross validation produces a confusion matrix that compares 

predicted versus actual group membership
25

. Using the algorithm provided by PC-LDA model, a 

training data set (50 spectra in each group) was created initially. As this algorithm is the 

predictor of group membership, we have performed blind-test using the remaining spectral data 

(10 spectra in each group) to further assess the suitability of the training data set. Binary 

calculations were done on these results based on PC-LDA scores on both training and blind test 

in order to obtain sensitivity and specificity of the diagnostic algorithm developed.  

Performance level of the PC–LDA modeling for tissue classification is further assessed 

by receiver operating characteristic (ROC) curve method. ROC curves were generated by 

successively changing the thresholds to determine correct and incorrect classifications for all 

subjects 
12

. 

2.6. Histological Evaluation  

Animals were sacrificed immediately after spectral acquisition and liver biopsies were 

taken out from one animal of each group representing normal, fibrosis, cirrhosis and reversal of 

cirrhosis.  The liver specimens were fixed in 10% buffered neutral formalin for 48 hrs.  Tissue 

sections were processed through graded alcohol and embedded in paraffin. Histopathological 

analysis was carried out on 5 µ thick sections using Hematoxylin and Eosin (H&E), and 

Masson's trichrome (MT) staining methods to assess the parenchymal changes and the degree of 

fibrosis within the tissue.  

3. Results 
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3.1. Fluorescence Spectral features 

High quality AF spectra from liver tissue were acquired minimally invasively using 320 

nm excitation wavelength. Fig. 1A shows the normalized and baseline corrected mean AF 

spectra (n = 60 in each group) of control, fibrosis, cirrhosis and reversal liver. Broad peaks were 

observed around 380 and 460 nm with a shoulder around 520 nm, in all the spectra. The 

emission peak around 380 nm is less intense for control liver and more intense for fibrosis and 

highly intense for cirrhosis compared with control liver. Interestingly, the intensity of this peak 

reduces from cirrhosis to reach the level of normal controls in the case of reversal liver. Area 

under fluorescence peak also shows a similar trend (Fig. 1B). Spectra from control liver showed 

a minimal area for this peak whereas fibrosis and cirrhosis showed successive increase and 

reversal showed a subsequent decrease. Pair wise ANOVA was performed on the peak intensity 

and area under the peak for the groups, control-fibrosis, fibrosis-cirrhosis and cirrhosis-reversal. 

Significant difference (p < 0.005) in peak intensity and area under the peak is observed for all 

pairs considered. 

As we have normalized the whole spectra with respect to NADH emission peak at 460 

nm, evaluation of peak intensity and area is not relevant here. Since normalization has no 

influence on the peak shift, the information regarding the same has been considered. For control 

liver, maximum intensity for this peak is observed at 463 nm, whereas for fibrosis and cirrhosis 

maximum intensity is observed at 459 and 457 nm respectively. In the case of reversed 

condition, this peak resumes back to 462 nm indicating its similarity to that of the normal 

controls. Considering the emission properties of NADH with respect to the three different 

conditions, a clear blue shift is observed for fibrosis from that of the control which becomes 
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more prominent as it progresses to cirrhosis. This blue shift disappears in the case of reversed 

condition with an observed emission of 462 nm.  

The emission peak around 520 nm is well defined in the case of cirrhosis, whereas it 

appears as a very weak shoulder in control, fibrosis and reversal. Variation in intensity of this 

peak follows the same pattern as that of 380 nm peak. Significant difference (p < 0.005) in the 

520 nm peak intensity is also observed for control-fibrosis, fibrosis-cirrhosis and cirrhosis-

reversal pairs. 

3.2. Optical redox ratio 

The Box-and-Whisker plot relating the variations in redox ratio of different groups is 

shown in Fig. 2. Drastic increase in redox ratio is observed for fibrosis and cirrhosis compared to 

normal controls with the increase being highly significant in the case of cirrhosis. Redox ratio 

has come down considerably for reversal and reaches a level similar to that of the normal 

control. Pair wise ANOVA between control-fibrosis, fibrosis-cirrhosis and cirrhosis-reversal 

shows significant difference (p < 0.005) in the redox ratio for all pairs considered. 

3.3. Multivariate analysis 

We have employed multivariate statistical tool PC-LDA to develop effective diagnostic 

algorithms for tissue classification based on AF spectra. Initially a training dataset of 50 spectra 

(10 spectra from each animal) from each group was used for this purpose. For the classification 

of different liver tissues types, the first seven principal components from each group were 

extracted. These extracted principal components contain ∼99% of the total variance of 

diagnostically significant AF spectral features. These significant PC’s are then fed into pair-wise 

discriminant analysis model to develop effective diagnostic algorithms for classification. The 
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resultant pair-wise discriminant function scores are presented in Fig. 3A. A discrimination line 

drawn at 0 gives good differentiation results for all the pairs considered. Position of pairwise 

discrimination scores were utilized to obtain diagnostic accuracy results. Diagnostic accuracies 

such as sensitivity and specificity were evaluated using the true positive and negative, and false 

positive and negative values obtained from the position of these discriminant scores. Sensitivity 

of 94%, 86%, and 98% with corresponding specificities of 92%, 98% and 86% were obtained for 

pairs, control-fibrosis, fibrosis-cirrhosis and cirrhosis-reversal respectively in the discrimination 

(Table 1).   

In order to validate the reliability of the training set, a blind-test was carried out in 10 

spectra (2 spectra from each animal) from each group. Discriminant function scores from blind 

test were inserted into the scatter plot of the training set for validation (Fig. 3A). The developed 

algorithm could correctly classify eight spectra as control and nine spectra as fibrosis of control-

fibrosis pair (with two control spectra misclassified as fibrosis and one fibrosis spectra 

misclassified as control), ten spectra as fibrosis and nine spectra as cirrhosis of fibrosis-cirrhosis 

pair (with one cirrhosis spectra misclassified as fibrosis), and nine spectra as cirrhosis and ten 

spectra as reversal in the cirrhosis-reversal pair (with one cirrhosis spectra misclassified as 

reversal). Classification results of blind test leads to sensitivity of 90%, 90% and 100% with 

specificity of 80%, 100% and 90% respectively for control-fibrosis, fibrosis-cirrhosis and 

cirrhosis-reversal pairs. 

Further, to evaluate the performance of pairwise PC–LDA based diagnostic dataset for 

liver tissue classification, the integration areas under receiver operating characteristic (ROC) 

curves (Fig. 3B) were generated from the pairwise discriminant score by varying the 

discrimination threshold levels. The areas under the ROC curves are encouraging with values 
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0.983, 0.960, and 0.954 respectively for the pairs of control-fibrosis, fibrosis-cirrhosis and 

cirrhosis-reversal. 

Apart from pair wise PC–LDA, the results were further represented in the form of 

confusion matrix considering all the four groups within a classification model (Fig. 4 and S1†). 

Clustering of resultant discriminant scores is observed with each class being mostly pooled with 

in coherent point clouds. Furthermore, majority of the discriminant scores of each group can be 

represented within an ellipse that corresponds to the classification model’s confidence interval. 

Average of the discrimination score for each group is represented as centroids (star symbol). 

These group centroids are well separated and are clearly differentiable with considerable distance 

between each group. Interestingly, the position of centroid for the group reversal lies near to the 

discriminant score clusters of control and fibrosis. This LDA confusion matrix indicated 55 out 

of 60 control spectra as correctly classified, where 5 spectra were misclassified as fibrosis. For 

fibrosis, only 33 spectra out of 60 were correctly classified, while 4, 1 and 22 spectra were 

misclassified as control, cirrhosis and reversal respectively. In the case of cirrhosis, 52 spectra 

were correctly classified, whereas 1, 1 and 6 spectra were misclassified as control, cirrhosis and 

reversal. In the case of reversal, LDA yielded 42 correct classifications and 7, 10 and 1 spectra 

were misclassified as control, fibrosis and cirrhosis respectively. These results are summarized in 

Supplementary Table 1. 

3.4. Histological evaluation 

H&E and MT stained liver sections of control, fibrosis, cirrhosis and reversal animals are 

shown in Fig. 5. Compared with normal controls, H&E stained sections of fibrosed liver tissue 

showed increased inflammatory cell infiltration, ballooning of hepatocytes with infiltration of 
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mononuclear cells, fatty changes and focal centrilobular necrosis. Compared to the fibrosis 

group, liver from cirrhosis group showed more parenchymal damage and fibrosis with some 

nodule formation. Interestingly liver sections of reversal group showed morphological pattern 

almost similar to that of normal control animals. MT staining revealed the variations in the 

degree of fibrosis between the groups. Fibrous tissue was seen as blue colored bands in the 

fibrosis group and as prominent wider bands surrounding nodules of liver cells in the cirrhosis 

group. In the reversal group, the liver morphology was almost similar to that in control animal  

with thin fibrous bands and less prominent nodules.   

4. Discussion 

In this study, we have investigated the minimally invasive AF spectral features of liver 

tissue from control animals, and those with CCl4 induced fibrosis, cirrhosis and after reversal of 

cirrhosis by stoppage of the intoxicant. We have also utilized multivariate data analysis 

technique based algorithm to interpret the vast spectral information for exact discrimination of 

liver tissue having varying degree and type of damage. Spectral preprocessing techniques such as 

baseline correction and normalization were carried out to obtain better efficiency in the 

differentiation. Excitation wavelength of 320 nm was used to get emissions around 380, 460, and 

520 nm respectively from the fluorophores collagen, NADH and FAD
17-21

. This excitation 

wavelength is most suitable for the characterization of tissue parameters based on these 

flurophores which are expected to have major changes during the liver abnormalities. 

Excess synthesis and deposition of extra cellular matrix (ECM) proteins, predominantly 

collagen in liver is the prime reason for intoxicant induced liver damage
7, 26

. Therefore, 

quantitative analysis of collagen can provide clear idea about the degree of liver damage. 

Increase in the level of collagen observed in fibrosis stage and still higher level in the cirrhosis 
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stage is attributed to the deposition of collagen in liver as a result of wound healing response and 

increased oxidative stress by intoxicants in liver cells
26, 27

. Decrease in the level of collagen on 

stoppage of intoxicants is due to ECM degradation and remodeling that takes place to regain the 

normal liver architecture and metabolism
23

. 

Oxidation of alcohol via alcohol dehydrogenase enzymes generates an excess of NADH 

in liver. This excess NADH promotes fatty acid synthesis and leads to liver damage
28

. The blue 

shifts observed for NADH emission peak around 460 nm for liver with fibrosis and cirrhosis can 

be attributed to the more immobilization of the same due to excess presence of this coenzyme
29

. 

Stoppage of intoxicant is expected to decrease the concentration of NADH. This decrease is 

reflected in the spectra of these animals where the emission of NADH resumes its original 

wavelength comparable to that of the normal animals.   

NADH and FAD are the metabolic co-enzymes that act as electron donor and acceptor in 

the primary electron transport chain of the cellular metabolism. A relative change in this 

reduction and oxidation factor is termed as redox ratio. Variation in the cellular redox ratio is 

used to monitor the metabolic activity. Increase in the redox ratio is observed for fibrosis and 

cirrhosis compared to control liver. As redox ratio has an inverse correlation with the metabolic 

activity, this result implies the synergistic interaction between intoxicants and liver that reduces 

the metabolic activity. An exactly opposite version of this phenomenon is observed in cancer 

cells where increased cellular metabolic activity results in a decreased redox ratio
30

. Oxidative 

stress induced by intoxicants in liver could be the reason behind the elevation in redox ratio
31, 32

. 

Multivariate statistical analysis which incorporates the entire AF spectral data for 

analysis is more robust and precise way to differentiate between spectra having varying 
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biochemical signatures. Initially, PCA was performed to reduce the high dimensional AF spectral 

dataset into a few important principal components. This reduced dataset was utilized as input for 

pairwise discriminant model. Fig. 3 A shows that the pairwise discriminant scores for different 

liver lesions form distinct, separate clusters. An overall sensitivity of 93%, 87% and 98% with 

corresponding specificities 90%, 98% and 87% were obtained for pairs, control-fibrosis, fibrosis-

cirrhosis and cirrhosis-reversal respectively in discriminating the tissue, using the pairwise 

discriminant scores (Table 1).  The ROC curves (Fig. 3B) of pairwise PC–LDA modeling further 

verifies the diagnostic efficiency of AF spectroscopy integrated with PC–LDA algorithm. An 

area under the ROC curve greater than 0.60 in discrimination is considered as a good 

classification model
33-35

. 

The discrimination results were further presented in the form of confusion matrix for 

more authenticity (Fig. 4 and S1†). Clustering of discriminant scores is observed for different 

groups. Mean of these scores were represented as centroids and the distance between centroids 

correspond to the difference in dimension between each group. This classification has been done 

based on the Mahalanobis distance. Mahalanobis distance is the multivariate measure of the 

separation of a point from the mean of a dataset in n-dimensional space. The sample has been 

assigned to the group from which it has shorter Mahalanobis distance
15

. Possibility of further 

discrimination between the clusters of each group was attempted by plotting ellipsoids obtained 

using the model confidence intervals for each class
36

.  For control, fibrosis and reversal groups, 

the resultant ellipsoids were found to be small in size and the data points are clearly clustered. 

But for cirrhosis, the size of this ellipsoid is large and the data points are scattered compared to 

other three groups. This may be due to the spectral variation resulted due to the variation in the 

level of collagen. Excess level of collagen compared to its average is observed in nearly fifteen 
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sites of cirrhosis liver which ultimately resulted in the scattering of the data points in the 

confusion matrix analysis. Interestingly, the position of the reversal group in this plot lies closer  

to fibrosis and control, and far away from cirrhosis. This clearly indicates the self regenerating 

ability of liver on stoppage of chronic intoxication after cirrhosis. This result gives an indication 

that AFS is a potential minimally invasive tool to diagnose liver diseases in vivo and this 

technique could be used for the early diagnosis of alcoholic liver disease and fatty liver disease 

of humans.     

5. Conclusions 

Minimally invasive autofluorescence spectroscopic analysis of liver diseases viz. fibrosis 

and cirrhosis, and a reversed stage of the condition have been reported for the first time. 

Multivariate analysis technique, PC-LDA on AF spectral data was successful in differentiating 

between different types and grades of liver lesions with high diagnostic sensitivity and 

specificity. Changes in flurophores like collagen, NADH and FAD were assessed using AF 

spectroscopy. These biomarkers have an essential role in structural and biochemical damage of 

liver due to chronic intoxication. Variation in metabolic activity and oxidative stress within liver 

was also analyzed using optical redox ratio. Therefore, AF spectroscopy holds great promise in 

minimally invasive in vivo diagnosis of early changes of fibrosis and cirrhosis that are usually 

associated with liver malignancy. AF spectral evaluation on higher degree of liver injury would 

help to get a better understanding of the intoxicant induced biochemical/structural changes in 

liver. The main limitation of this study is the practical difficulties encountered during the 

minimally invasive measurements due to the large size of the optical probe. We are in the 

process of development of an endoscope assisted minimally invasive laser induced, portable AF 

spectroscopy systems with smaller probe diameter which could solve this issue. Moreover, we 
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are working on animal trials in larger sample size and we expect that this methodology could be 

used for clinical evaluation, in the near future.  
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Figure Captions 

Graphical abstract. Schematic representation of the degree of intoxicant induced liver injury 

and regeneration and the minimally invasive analysis using autofluorescence spectral features. 

Fig. 1. (A) Average fluorescence emission spectra of various degree of intoxicant induced liver 

injury (B) Area under the emission peak of collagen around 380 nm evaluated by Gaussian curve 

fitting. Data are shown as Mean + SD. 

Fig. 2. Variation in optical redox ratio for different grades of liver injury represented as Box-

and-Whisker plot. The middle line represents the median. The bottom of the box is the 25th 

percentile and the top is the 75th. The line extending from the top of the box represents the upper 

extreme and the line extending from the bottom of the box represents the lower extreme. 

Fig. 3. (A) Pairwise discriminant plot based on PC-LDA for different pairs of liver lesions. Solid 

symbols represent the results of training data set and the open symbols represent the validation 

data set. (B) The receiver operating characteristic curves of the discrimination using PC–LDA. 

Fig. 4. PC-LDA score plots obtained using confusion matrix analysis. The ellipsoids display the 

model confidence intervals for each class.  

Fig. 5. (A-D) Hematoxylin and eosin and (E-H) Masson’s trichrome stained liver sections. Liver 

sections from (A, E) control, (B, F) fibrosis, (C, G) cirrhosis  and (D, H) reversal group of 

animals showing variation in tissue architecture in the test group, with ballooning of hepatocytes, 

fatty change, fibrosis and nodule formation that are more prominent in cirrhosis animal than 

fibrosis animal. Liver from reversal animal appears similar to the control liver. 
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Table 1. Overall diagnostic accuracies obtained using multivariate analysis, PC-LDA for 

different lesion pairs consisting of 50 spectra in each group in the training set and 10 spectra in 

each group in the validation set. 

Lesion pairs 

Control versus 

Fibrosis 

Fibrosis versus 

Cirrhosis 

Cirrhosis versus 

Reversal 

Sensitivity 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Training set 94 92 86 98 98 86 

Validation set 90 80 90 100 100 90 

Overall 93.33 90 86.67 98.33 98.33 86.67 
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Fig. 1. (A) Average fluorescence emission spectra of various degree of intoxicant induced liver injury (B) 
Area under the emission peak of collagen around 380 nm evaluated by Gaussian curve fitting. Data are 

shown as Mean + SD.  
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Fig. 2. Variation in optical redox ratio for different grades of liver injury represented as Box-and-Whisker 
plot. The middle line represents the median. The bottom of the box is the 25th percentile and the top is the 
75th. The line extending from the top of the box represents the upper extreme and the line extending from 

the bottom of the box represents the lower extreme.  
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Fig. 3. (A) Pairwise discriminant plot based on PC-LDA for different pairs of liver lesions. Solid symbols 
represent the results of training data set and the open symbols represent the validation data set. (B) The 

receiver operating characteristic curves of the discrimination using PC–LDA.  
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Fig. 4. PC-LDA score plots obtained using confusion matrix analysis. The ellipsoids display the model 
confidence intervals for each class.  
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Fig. 5. (A-D) Hematoxylin and eosin and (E-H) Masson’s trichrome stained liver sections. Liver sections from 
(A, E) control, (B, F) fibrosis, (C, G) cirrhosis  and (D, H) reversal group of animals showing variation in 
tissue architecture in the test group, with ballooning of hepatocytes, fatty change, fibrosis and nodule 

formation that are more prominent in cirrhosis animal than fibrosis animal. Liver from reversal animal 
appears similar to the control liver.  
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