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Non-aqueous separation of lithium and sodium
perchlorates by selective coordination with a
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Separation of lithium and sodium is a topic of substantial scientific and industrial importance. Regarding

Li/Na perchlorates, which are not only environmental hazards but also useful oxidants in chemical syn-

thesis, an efficient Li–Na perchlorate separation method has not been reported due to lack of a ligand

which can selectively coordinate with one of the two. Herein, we report an efficient Li–Na perchlorate

separation by using our hexadentate ligand N,N’,N’’-tris-(2-N-diethylaminoethyl)-1,4,7-triaza-cyclono-

nane (DETAN), which can selectively coordinate with LiClO4 at room temperature to form a monomer in

excellent yield but does not coordinate with NaClO4 even at elevated temperature. The structure of the

monomeric complex, [LiClO4(DETAN)] (1), was characterised by single-crystal X-ray diffraction and NMR

spectroscopy.

1. Introduction

Lithium plays a vital role in lithium-ion batteries (LIBs),1

driving exponential demand across the energy sector.2 Despite
the presence of Li-enriched ores such as petalite LiAl(Si2O5)2,
lepidolite K(Li,Al)3(Al,Si,Rb)4O10(F,OH)2 and spodumene LiAl
(SiO3)2, the global Li supply largely relies on isolating Li from
the sodium-rich brine,3–6 which renders Li–Na separation of
substantial scientific and industrial importance. However,
given the close resemblance of Li+ and Na+ in terms of both
their charge (both +1) and bonding characteristics (both form
largely ionic bonds with ligand atoms, with very little covalent
contribution7), their separation is challenging. So far, the
reported Li–Na separation strategies include:3 (i) solvent extrac-
tion; (ii) adsorption in intercalated materials; (iii) electro-
chemical intercalation/de-intercalation; (iv) membrane separ-
ation; (v) ligand separation; (vi) biological separation; and (vii)
sedimentation separation. Among the methods, solvent extrac-
tion and ligand separation both depend on the difference of
the metal cation–ligand interactions between Li+ and Na+,
stemming largely from the difference of the ionic radii of the

cations. Hence, designing a ligand of high selectivity between
binding Li+ and Na+ is the key requirement for achieving an
efficient Li–Na separation. Most of the current ligand systems
are based on crown ethers,8 while anthraquinone-9 and calix-
[4]-arene-based10 systems have been reported as well. Very
recently, Nitschke, Wales and co-workers reported a proton-
responsive molecular cage of the tris(2-aminoethyl)amine
(TREN) and tris(formylpyridyl)benzene subcomponents, which
can separate Li+ from Na+ in the mixture of their bis(trifluoro-
methanesulfonyl)imide (NTf2) salts.

11

Understandably, the anion also influences the Li/Na separ-
ation by intervening with the ligand coordination to the metal
cation. As such, usually a ligand system which works for one
anion (such as the Li/NaNTf2 in the aforementioned Nitschke/
Wales system11) cannot be directly translated to another anion.
In this work, we focus on the perchlorate anion (ClO4

−).
Featuring a tetrahedral structure with distributed charge at
four O atoms,12 perchlorate is a potential public health
concern due to its toxicity.13 Also, lithium perchlorate (LiClO4)
is of interest in organic synthesis (e.g. accelerating Diels–Alder
reactions14 and promoting cyanosilylation of carbonyl com-
pounds15) and as an electrolyte component in Li-ion bat-
teries.16 In the natural environment, LiClO4 usually co-exists
with its heavier group-1 sister, sodium perchlorate (NaClO4),
and their sensing and isolation has been of long-standing
scientific interest since the early 20th century.17 Yet, there is
the lack of an efficient ligand that can separate LiClO4 and
NaClO4. In this work, we fill the knowledge gap by using a
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hexadentate N-donor ligand N,N′,N″-tris-(2-N-diethyl-
aminoethyl)-1,4,7-triaza-cyclononane (DETAN), which was
developed by us in 2021.18 The DETAN ligand has exhibited
versatile coordination features with group-1 alkali metal
cations.19,20 Herein we describe the selective binding of
DETAN to LiClO4 in a 1 : 1 molar mixture of Li/NaClO4, which
results in the separation of the two perchlorates. The DETAN–
LiClO4 complex is proven to be a monomer by single-crystal
X-ray diffraction (SCXRD), and its electronic structure is
studied using DFT computations. The full details are elabo-
rated on in the following sections.

We would like to bring to our readers’ awareness that this
Article focuses on ligand design and aims at understanding
the coordination behaviours of the DETAN ligand towards
LiClO4 and NaClO4 in non-aqueous non-coordinative toluene
solution. Water molecules, or any other coordinative solvents
(such as THF), would profoundly change the coordination
dynamic, hence the conclusions drawn here are not necessarily
applicable in an aqueous, or coordinative solvent,
environment.

2. Results and discussion
2.1 Synthesis and characterization

We initially investigated the reactions of LiClO4 or NaClO4

with DETAN in d6-benzene. The NMR-scale reaction between
LiClO4 and DETAN at 1 : 1 molar ratio was monitored by both
1H and 7Li NMR. At room temperature within approximately 2
days, the starting material LiClO4 was consumed, with the con-

comitant formation of a new set of 1H NMR signals corres-
ponding to a DETAN-coordinated species, as well as a new 7Li
NMR signal at 0.19 ppm (see SI for the NMR spectra, Fig. S2).
Scaling up the reaction in toluene at room temperature for 2
days and the following crystallisation led to the isolation of [Li
(κ4-N-DETAN)(η1-O-ClO4)] (1) in 66% crystalline yield (Fig. 1a).

Single crystals of 1 suitable for SCXRD analysis were iso-
lated from its diethyl ether solution, and its molecular struc-
ture is exhibited in Fig. 2. 1 is a monomeric LiClO4 complex,
joining the number of previously reported examples of such
structures.21 Though 1 is not the first LiClO4 monomer
complex, it does have a few intriguing structural features. The
DETAN ligand in 1 coordinates to the Li+ centre in a κ4 mode,
with all the three nitrogen atoms in the macrocycle and one of
the three sidearms coordinated. This DETAN coordination
mode is similar to our previously reported DETAN-coordinated
lithium iodide [Li(κ4-N-DETAN)(I)].19 The perchlorate anion in
1 coordinates to the Li+ centre in a η1 mode through one of its
four oxygen atoms. The Li–O bond length is 2.063(3) Å, which
is substantially shorter (by approximately 0.14 Å) than a struc-
turally relevant monomeric LiClO4 complex ligated with a tri-
podal tripyridyl ligand TPA, [Li(κ4-N-TPA)(η1-O-ClO4)], where
the Li–O bond length was reported at 2.2023(3) Å.21p The short
Li–O bond in 1 cf. that in [Li(κ4-N-TPA)(η1-O-ClO4)] could be a
result of the weaker N → Li dative bonds in 1 (avg. 2.16 to
2.25 Å) than in the TPA complex (2.08 to 2.18 Å), which
renders the Li+ centre in 1 more positively charged and hence
the shorter Li–O bond. The four Cl–O bonds in ClO4

− can be
divided into two groups: (1) the Cl1–O1 bond at 1.4476(10) Å;
(2) the Cl1–O2/O3/O4 bonds at 1.418–1.428 Å. The former is

Fig. 1 Reactions between (a) LiClO4 or (b) NaClO4 and ligands.
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longer than the latter, likely due to the coordination with Li+,
which withdraws the electron density. Despite the small vari-
ation, all four Cl–O bond lengths are within the normal range
for a ClO4

− anion,21 and should be treated as double bonds.
Generally speaking, all the applications and hazards of the

perchlorate anion are underpinned by its unique structure of a
formally high-valent chlorine centre (positively charged) and
four electron-rich oxygens (negatively charged). In this regard,
a similarity can be drawn between the perchlorate anion and

topical hypervalent organoiodine compounds, which are also
predominantly used as oxidants.22 Indeed, close examination
of the inherent electronic structure of ClO4

− has inspired the
design of an iron-catalyst system for perchlorate reduction.23,24

Given this context, in an effort to explore the electronic struc-
ture of 1, we conducted Density Functional Theory (DFT) calcu-
lations (see SI for details).

A natural population analysis was completed to probe the
atomic charges in the structure of 1, the results of which are
outlined in Fig. 3(a). Additionally, the electrostatic surface
potential (ESP) was calculated and is outlined.

The positive NPA charges are located on the Li and Cl and
found to be +0.835e and +2.551e, respectively, whilst the nega-
tive charges are primarily located on the four O atoms, with
O1 having the largest absolute charge of −0.970e when com-
pared to O2, O3 and O4, which exhibit an average charge of
−0.840e. The four nitrogen atoms that coordinate to the Li+

also exhibit negative charges (average charge of −0.483e). The
ESP diagram also highlights the negative charge build up over
the perchlorate species.

Since the DETAN ligand coordinates to Li+ in 1 in a κ4-N
mode, and two of the three sidearms remain coordination-
free, we explored the possibility of replacing the DETAN ligand
with a typical κ4-N ligand, namely Me6Tren. In our previous
reports, both the DETAN and the Me6Tren ligands were found
to be able to coordinate to Li+, though their kinetic behaviours
in solution are quite different.20 Surprisingly, in this case we
find that the Me6Tren does not coordinate with either LiClO4

or NaClO4 even at elevated temperatures (60 °C) (Fig. 1).
Though the reason(s) behind this somewhat surprising
finding remain unclear, we hypothesise that the substantially
different kinetic features between the fully flexible Me6Tren
and the semi-rigid DETAN play an important role.20 This rigid
nature was indeed a key part of our initial design concept of

Fig. 2 Single-crystal X-ray diffraction structure of [Li(DETAN)ClO4] (1).
Hydrogen atoms are omitted for the sake of clarity. The selected bond
distances (Å) and angles (°) of 1 are Li1–O1, 2.063(3); Li1–N1, 2.183(3);
Li1–N2, 2.141(3); Li1–N3, 2.164(3); Li1–N4, 2.254(2); Cl1–O1, 1.4476(10);
Cl1–O2, 1.4265(12); Cl1–O3, 1.4176(12); Cl1–O4, 1.4275(11); O1–Li1–N1,
168.57(13); N1–Li1–N4, 82.35(9); N2–Li1–N1, 82.01(9); N2–Li1–N3,
86.52(9); N2–Li1–N4, 130.62(12); N3–Li1–N1, 83.00(9); N3–Li1–N4,
137.08(12), O2–Cl1–O1, 109.05(7); O2–Cl1–O4, 109.21(8); O3–Cl1–O1,
108.85(7); O3–Cl1–O2, 110.05(9); O3–Cl1–O4, 110.55(9); O4–Cl1–O1,
109.11(7); Cl1–O1–Li1, 156.05(10). The atomic colour codes in 1: Li
(cyan); C (gray); N (blue); Cl (forest green); O (red).

Fig. 3 The NPA charges of several atoms of interest in the structure of 1 (a) alongside the calculated electrostatic surface potential (b).
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the DETAN ligand.18 In a very recent report, we also found that
the different coordination kinetic features of Me6Tren vs.
DETAN led to a pronounced difference in their performance in
a ligand-promoted alkali metal silylalkyls mediated CvO bond
methylenation.25

After the isolation of 1, we tested the DETAN coordination
reaction with NaClO4 also in d6-benzene (Fig. 1b).
Interestingly, there was no coordination between NaClO4 and
DETAN even at 60 °C. It is obvious that the DETAN ligand exhi-
bits highly selective coordination to LiClO4, but not NaClO4.
This is the first ligand with such a selective coordination
behaviour between Li/NaClO4.

2.2 Separation experiment of Li/NaClO4

Based on the selective coordination of DETAN to LiClO4, we
designed a solid–liquid extraction protocol to isolate LiClO4

and NaClO4 from their 1 : 1 molar mixture. A solution of
DETAN in toluene was added to a well-ground solid mixture of
LiClO4 and NaClO4 and stirred at room temperature for 2 days
(Fig. 4). After the reaction, the residual solid phase and the
organic phase were treated in vacuo to remove all volatiles and
subsequently analysed by 7Li and 23Na NMR spectroscopy. In
the organic phase, a strong singlet peak corresponding to
complex 1 was observed in the 7Li NMR spectroscopy, while no
sodium-containing species were detected in the 23Na NMR. In
contrast, the solid phase (dissolved in D2O) exhibited a strong
23Na NMR signal corresponding to NaClO4 and only a very
weak 7Li signal, confirming a minimal Li+ retention. Only Li
and Na were determined in the organic and solid phases,
respectively, by inductively coupled plasma optical emission
spectrometry (ICP-OES). The ICP-OES concentrations
suggested that the recovery yield of Li in the organic phase was
99%, with 70% of Na recovered in the solid phase (the slightly
lower yield of NaClO4 is due to the filtration, where a small
amount of NaClO4 was retained on the filter paper and could
not be recovered). We optimised the filtration process and the
recovery of Li and Na can reach 94% and 96%, respectively
(see SI for separation experiment, batch 2 and Table S1).
Additionally, we can also recycle approximately 68% DETAN

ligand and recover 78% of Li through a following liquid–liquid
back extraction using deionised water (see SI for back-extrac-
tion experiment, batch 5 and Table S2). The following test for
the solubility of perchlorates (LiClO4 and NaClO4) showed that
the perchlorates were not dissolved in both toluene and
benzene (see SI for solubility test, batches 3 to 4 and Table S1).

In order explore the influence of the anionic component on
the coordination of DETAN to the Li/Na salts, we selected an
additional salt (tetrafluoroborate, BF4

−) on the basis of its similar
tetrahedral geometry and charge distribution. Once again, the
DETAN ligand preferentially bound to the Li salt (LiBF4) over the
Na salt, mirroring the selectivity in the case of the perchlorate
anion (see SI for details regarding selectivity and solubility experi-
ments, batches 6–8 and Table S3). This is particularly interesting
as previous work focusing on iodide (I−) and tetraphenylborate
(BPh4

−) anions has shown that coordination utilising DETAN is
achievable for both Li/Na salts, unlike ClO4

− and BF4
−.19

3. Conclusion and outlook

In this work, we describe the first example of a ligand (DETAN)
that is able to efficiently separate LiClO4 and NaClO4 through
selective complexation of the Li containing species. The semi-flex-
ible framework of DETAN may potentially influence the cation
recognition, as the more flexible Me6Tren ligand fails to react with
LiClO4. A separation experiment at 1.0 mmol scale was conducted
to demonstrate the feasibility of the isolation. With the concept
demonstrated, further work is underway in three directions: (i) to
explore the influence of the anionic component, such as halides
and pseudo-halides; (ii) to modify the DETAN ligand with a variety
of alkyl and aryl substituents and examine their separation per-
formance; (iii) to expand the scope to the aqueous environment,
which is closer to the potential application scenario.
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