

Chemical Science

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Heller, C. D. Buch, A. Virovets, E. V. Peresypkina, H. Lerner, F. Fantuzzi and M. Wagner, *Chem. Sci.*, 2025, DOI: 10.1039/D5SC06234A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>Information for Authors</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

View Article Online DOI: 10.1039/D5SC06234A

ARTICLE

Synthesis of Perhalogenated Silylboranes (X = Cl, I) and Their Application in Regiodivergent Alkene Silaboration[†]

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Jan Heller, ^{‡a} Christoph D. Buch, ^{‡a} Alexander V. Virovets, ^a Eugenia Peresypkina, ^a Hans-Wolfram Lerner, ^a Felipe Fantuzzi, ^b and Matthias Wagner ^{*a}

Silaboration of olefins is a synthetically valuable and atom-economic mode of functionalization; however, it typically requires transition-metal catalysis. We have overcome this requirement by using highly reactive perhalogenated silylboranes, R_2B – SiR_3 (R = Cl, I), for which we herein report a straightforward synthesis, a full characterization, and their key properties. Access to this compound class was enabled by substantial improvement in the synthesis protocol for our previously published compound [Et_4N][I_3B – SiI_3], now available on a 40 g scale via only two steps. Cation exchange with $Li[Al(OC(CF_3)_3)_4]$ affords the mixture $Li[I_3B$ – SiI_3]/ I_2B – SiI_3 /LiI, serving as a synthetic equivalent of the elusive pure I_2B – SiI_3 . Its chlorine analog CI_2B – $SiCI_3$ is accessible as a distillable liquid via treatment of [Et_4N][I_3B – SiI_3] with $GaCI_3$. For both perhalogenated silylboranes, various Lewis base adducts $Do\cdot R_2B$ – SiR_3 were obtained in excellent yields and structurally characterized with X-ray diffraction (Do = SMe_2 , Py, PPh_3 , IDipp; IDipp = 1,3-Dis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene). We demonstrated that $Me_2S\cdot I_2B$ – SiI_3 undergoes efficient 1,2-silaboration of the challenging, non-activated substrate ethylene at rt with 0.1 eq. BI_3 as promoter. In contrast, $Li[I_3B$ – $SiI_3]/I_2B$ – SiI_3/LiI effects a quantitative, unprecedented 1,1-silaboration of cyclohexene at rt. This remarkable reactivity switch was elucidated by experimental and quantum-chemical studies of the underlying steric and electronic factors.

Introduction

Once considered exotic and of limited utility, perhalogenated diborane(4) and disilane compounds (I, III; Figure 1a) have recently emerged as valuable building blocks for purposes ranging from organic synthesis to materials development. 1-6 The direct bond between two Lewis-acidic sites in I and III, each bearing good leaving groups, presents both challenges and opportunities: on the one hand, this unique combination promotes spontaneous disproportionation and vigorous decomposition upon exposure to air and moisture.7-10 On the other hand, it enables uncatalyzed diboration reactions using I,11-17 the in situ generation of versatile [SiX₃] nucleophiles from III upon simple halide addition, 1819 and extensive late-stage derivatization at the B-X and Si-X bonds of the primary products. Thus, the abundant contrast to bis(pinacolato)diboron (pinB-Bpin), whose B atoms are electronically tamed by O=B π -donation and serve primarily as transmetallation partners in Suzuki-Miyaura cross-couplings,²⁰⁻ ²² type-I halogenoboranes are tailored for applications where the B atoms are to remain as property-determining functional

Given the indispensable role of borylated^{53,54} and silylated⁵⁵ building blocks in synthesis, it is desirable to combine both types of functional groups within a single building block, for which silylboranes of the type R₂B-SiR₃ are the most obvious candidates.56-60 Electronically stabilized representatives such as the prominent pinB-SiMe₂Ph typically require activation by (precious) metal complexes prior to addition across C=C double^{61–63} or C≡C triple bonds.^{64–72} In only a few cases, the addition of a (Lewis) base (KOtBu,7374 KN(SiMe₃)₂,75 PR₃,76 pyridines^{77,78}) has been sufficient to replace the transition metal catalyst in silaboration reactions. Yet, a significant proportion of base-catalyzed silylborane transformations results incorporation of either the boryl^{74,79–84} or the silyl^{85–91} group,⁹² while the respective counterpart is discarded. So far, a single uncatalyzed silaboration reaction has been reported, employing compounds IVH and IVCI in THF (Figure 1b).93,94 Key to this transformation is the incorporation of both the B and Si atoms of IV into planar heterofluorene scaffolds, which - compared to pinB-SiMe₂Ph - enhances their exposure to the unsaturated substrate while reducing π -electron donation into the vacant B(pz) orbital (quantum-chemical calculations exclude a

units in the final molecule. $^{23-29}$ Likewise, the Si_2X_6/X^- trichlorosilylation system and the controlled disproportionation of Si_2X_6 with NR_3^{30-32} have proven valuable for the synthesis of extensively derivatizable organosilanes, $^{33-36}$ oligotetrelanes, $^{37-42}$ and silicon clusters. $^{43-50}$ In contrast to I, III undergoes no spontaneous 1,2-additions to unsaturated organic substrates, and theoretical studies predict a prohibitively high activation barrier without a catalyst. 51,52

a. Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany

b. School of Chemistry and Forensic Science, University of Kent, Park Wood Rd,

[‡]These authors contributed equally to this work.

[†]Supplementary Information available: Synthetic procedures, NMR spectra, mass spectra, X-ray crystallographic data and computational details. CCDC 2470869–2470889. For SI and crystallographic data in CIF or another electronic format see DOI: 10.1039/x0xx00000x

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 10 Leotshe 2025. Downloaded on 2025-09-15 19:43:18.

ARTICLE Journal Name

promoting effect of the THF ligand on B-Si-bond cleavage; cf. the transition state TS of olefin silaboration shown in Figure 1b). Based on this background and the high reactivity of I and III, we reasoned that the perhalogenated silylborane II (Figure 1a) as a silaboration reagent should uniquely combine a strong tendency towards B-Si heterolysis and diverse opportunities for subsequent derivatization. Herein, we demonstrate that type-II compounds with X = Cl, I can indeed be readily synthesized on a multigram scale. We provide a full characterization of their Badducts with various Lewis bases and show that the Cl derivative Cl₂B-SiCl₃ can even be isolated in its free form as a distillable liquid. Notably, we disclose that both uncatalyzed 1,2and rare 1,1-addition reactions to alkenes have been achieved. Only a few previously reported compounds share structural or electronic features with II. Among them are the borate H[V] and the nido cluster VI (Figure 1c).95,96 Furthermore, the molecular structure of the anion [Cl₃B-SiCl₃]- has been determined through X-ray crystal structure analysis of the [(TMS₂N)SiCl₂-B(η^5 -C₅Me₅)][Cl₃B-SiCl₃] (TMS = Me₃Si).⁹⁷

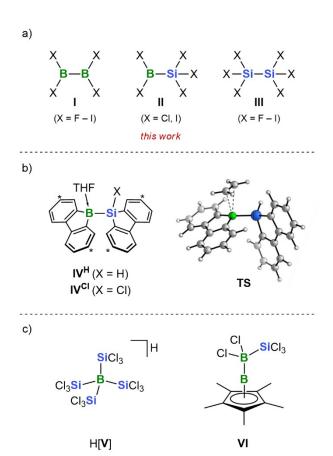


Fig. 1 (a) Perhalogenated diboranes(4) (I), disilanes (III), and the perhalogenated silylboranes (II) studied in this work. (b) Previously studied silylboranes (IV) capable of undergoing uncatalyzed silaboration reactions (C atoms marked with asterisks bear tBu substituents); computed transition state (TS) for the silaboration of ethylene with IVH (tBu groups have been omitted in the calculations). (c) Silylborates $H[{f V}]$ and ${f VI}$ bearing some structural similarity with ${f II}$.

Results and Discussion

View Article Online DOI: 10.1039/D5SC06234A

The synthesis of B₂X₄ (I) dates back to 1925, but for decades remained the domain of specialists capable of mastering the technically challenging gas-phase protocols of the time.98-100 A major breakthrough came in 1981, when Nöth et al. obtained B₂Br₄ in good yields by converting B₂(OMe)₄ with BBr₃ through synthesis.¹⁰¹ In 2017, convenient solution-phase Braunschweig et al. extended this approach to the other perhalogenated diboranes(4) via solution-phase reactions of B₂Br₄ with SbF₃, GaCl₃, and Bl₃.⁵

Si₂Cl₆, a side product of several large-scale processes in the silicon industry, 102 is commercially available; quantitative CI/F exchange with SbF₃ affords Si₂F₆.¹⁰³ The perbromo- and periododisilanes are accessible from Si₂Ph₆ by Ph/X exchange with $MeC(O)X/AIX_3$ (X = Br, I). 104

Analogous to how B2Br4 and Si2Cl6 grant access to their respective compound classes, the salt [Et₄N][I₃B-SiI₃] ([Et₄N][**1**]; Scheme 1) serves as a key starting material for developing perhalogenated silylboranes. Several years ago, we first reported [Et₄N][1], primarily to demonstrate the in situ formation of [SiCl₃] as the reactive intermediate in the Si₂Cl₆/Cl⁻ trichlorosilylation system via Lewis-adduct formation with BX₃.¹⁹ Our study revealed that (excess) BI₃ is a more effective trapping reagent than BCl₃, because it is the stronger Lewis acid and outcompetes coexisting Si₂Cl₆ for coordination with [SiCl₃]⁻, thus suppressing the formation of unwanted oligosilane side products.18 By thoroughly optimizing the original protocol, the yield of [Et₄N][1] was increased from ≈45% to ≈70%, and the synthesis was scaled to ≈40 g (Scheme 1). A key improvement is the addition of a second portion of BI₃ (0.1 eq.) toward the end of the reaction, following the initial addition of 2 eq. BI₃. This prevents contamination of [Et₄N][1] with $[Et_4N][I_2ClB-Sil_3]$, previously described as an 'unknown side product'; its identity has now been unequivocally confirmed by X-ray crystallography (Figure S102). This finding laid the foundation for a systematic exploration of perhalogenated silylboranes.

Syntheses of new compounds

The quantitative Si-Cl/Si-I exchange during the formation of [Et₄N][1] is advantageous, as iodinated products crystallize more readily in pure form than their chlorinated congeners. However, in combination with the salt-like nature of [Et₄N][1], this results in extremely low solubility, posing challenges for subsequent transformations. As initial derivatizations, we consequently replaced one I- ligand in [Et₄N][1] with neutral donor ligands (Do) bearing solubilizing substituents. To this end, suspensions of [Et₄N][1] and Krossing's salt (Li[Al(OC(CF₃)₃)₄])¹⁰⁵ in CH₂Cl₂ were treated with the respective ligand at rt [Do: SMe₂, pyridine (Py), PPh₃, 1,3-bis(2,6-diisopropylphenyl)-1,3dihydro-2H-imidazol-2-ylidene (IDipp); Scheme 1]. After filtration, colorless crystals of the corresponding adducts 2.Do readily grew from the filtrate (yields: SMe₂ = 91%; Py = 83%; PPh₃ = 87%; IDipp = 71%). In stark contrast to BI₃, which is sensitive to sunlight, 2.Do exhibit remarkable photostability, with no signs of decomposition upon light exposure.

Journal Name ARTICLE

Cation-exchange using Krossing's salt precipitated Lil as an insoluble byproduct instead of releasing soluble [Et₄N]I, thereby driving the quantitative I-/Do substitution and facilitating the isolation of pure 2.Do. Most of the second byproduct, $[Et_4N][Al(OC(CF_3)_3)_4]$, remained in the mother liquor; residual traces adhering to the crystals were removed by rinsing with ortho-difluorobenzene (oDFB). To characterize the primary [Et₄N]⁺/Li⁺ cation-exchange product, an equimolar mixture of [Et₄N][1] and Li[Al(OC(CF₃)₃)₄] was stirred in oDFB. The resulting solid, which proved insoluble in all common inert solvents, was analyzed by solid-state ¹¹B and ²⁹Si NMR spectroscopy. The data indicated the presence of Li[1] along with free 2 (and already eliminated LiI; see the Supporting Information for more details). Given that the insolubility of the free silylborane I2B-Sil3 (2) precluded its isolation and characterization in pure form, we next turned our attention to the synthesis of its perchlorinated congener Cl₂B-SiCl₃ (**3**; Scheme 1).

Scheme 1 Optimized synthesis of [Et₄N][1], enabling multigram-scale access to this key starting material. Conversion of the poorly soluble salt [Et₄N][1] into moderately soluble neutral donor adducts 2·Do (Py: pyridine; IDipp: 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2*H*-imidazol-2-ylidene). Formation of the liquid perchlorinated silylborane 3 and its adducts 3·Do. Reaction of 3 with Bl₃ does not furnish 2, but yields the five-membered ring compound 4, characterized by X-ray crystallography. Reagents and conditions: (i) 1.25 eq. I₂, *n*-heptane, 80 °C, min. 10 h, 48% yield; (ii) 1 eq. [Et₄N]Cl, 0.5 eq. Si₂Cl₆, 0.1 eq. Bl₃, CH₂Cl₂, rt, 24 h, 72% yield; (iii) 1.1 eq. Li[Al(OC(CF₃)₃)₄], oDFB, rt, 24 h; (iv) 1.1 eq. Do: SMe₂, pyridine (Py), PPh₃, 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2*H*-imidazol-2-ylidene (IDipp), CH₂Cl₂, rt, 24 h, SMe₂ = 91%, Py = 83%, PPh₃ = 87%, IDipp = 71% yield; (v) *Method A*: 2.1 eq. GaCl₃, 80 °C, 1 h, 96% yield; *Method B*: 2.1 eq. GaCl₃, oDFB, rt, 15 min; (vi) 1.0 eq. Do: SMe₂, Py, PPh₃, IDipp, oDFB, rt, 15 min, SMe₂ = 94%, Py = 95%, PPh₃ = 91%, IDipp = 89% yield; (vii) 2 eq. Bl₃, oDFB, rt, 15 min, 95% yield; (viii) 1 eq. [Et₄N]Cl, oDFB, rt, 15 min, 92% yield.

The targeted full I/Cl substitution was straightforwardly achieved by stirring [Et₄N][1] with 2 eq. GaCl₃11. Effect as a soft mixture that gradually liquefied upon intermittent heating to 80 °C (Method A), or in oDFB (Method B). Neat 3 (Method A) or its calibrated oDFB solution (Method B) was obtained by gas-phase transfer of all volatiles under static vacuum at rt into a glass vessel cooled with liquid N₂. ¹⁰⁶ The colorless donor adducts 3-Do were harvested in crystalline form after stirring 3 and Do in oDFB for 15 min at rt (Scheme 1; yields: SMe₂ = 94%; Py = 95%; PPh₃ = 91%; IDipp = 89%).

As noted above, the perchlorinated analogue $[Et_4N][Cl_3B-SiCl_3]$ of $[Et_4N][1]$ is not accessible through trapping of in situgenerated $[SiCl_3]^-$ with BCl₃. With the free silylborane $\bf 3$ in hand, we have now demonstrated that its reaction with $[Et_4N]Cl$ in oDFB affords $[Et_4N][Cl_3B-SiCl_3]$ in >90% yield (Scheme 1). This confirms that the BCl₃-based trapping experiment has failed not due to an inherent instability of $[Cl_3B-SiCl_3]^-$, but rather because of interfering side reactions that dominate in the mixture BCl₃/Si₂Cl₆/[Et₄N]Cl.

As a final approach, we attempted to access pure **2** via CI/I exchange at **3** using 2 eq. BI₃ in *o*DFB. Instead of the target compound, we obtained the five-membered ring species **4** in good yields (Scheme 1). Its solid-state structure provides valuable insight to rationalize fundamental reactivity patterns of perhalogenated silylboranes (see below).

NMR-spectroscopic, mass-spectrometric, and X-raycrystallographic characterization of new compounds¹⁰⁷

Liquid-phase NMR spectra were recorded at rt in CD_2Cl_2 and on a sample of neat **3**.

The free perchlorinated silylborane 3 gives rise to a singlet at 63.7 ppm in the ¹¹B NMR spectrum and to a 1:1:1:1 quartet at -8.2 ppm in the ²⁹Si NMR spectrum (¹J(Si,B) ≈ 200 Hz; Figures S24, S25). Tetracoordinated species typically show ¹¹B NMR signals in the high-field region of the spectrum. The specific chemical shift values are governed by two main factors: (i) the electron density at the ¹¹B nucleus, which reflects the donor strength of the coordinating ligand, and (ii) shielding effects arising from the magnetic anisotropy of the electron shells of the donor atoms, which are especially pronounced for heavier donors. 108 To sidestep a comparative evaluation of magnetic anisotropy effects, we restrict our analysis to 2.Py vs. 2.IDipp (2nd-row donor atoms; δ (¹¹B) = -24.8 vs. -37.1) and **2**·SMe₂ vs. **2**·PPh₃ (3rd-row donor atoms; δ (11B) = -31.8 vs. -40.6). The observed trends align with the expectation that the more stable adducts are formed with IDipp and PPh3, respectively. The chlorinated compounds 3·Py vs. 3·IDipp ($\delta(^{11}B) = 3.7 \text{ vs.} -4.4$) and 3·SMe₂ vs. **3.**PPh₃ (δ (¹¹B) = 1.4 vs. -3.4) exhibit the same chemical-shift trends within each pair as observed for the corresponding 2.Do adducts. However, all four signals appear at markedly lower field, which we attribute to decreased magnetic anisotropy shielding when going from the BI₂(Do) to the BCI₂(Do) fragments.

The ²⁹Si NMR resonances of **2**·Do and **3**·Do were not detectable in the solution spectra, owing to unresolved ¹J(B,Si) coupling and quadrupolar broadening induced by the quadrupolar ¹¹B nucleus (S = 3/2). ¹⁰⁸ The ³¹P NMR spectra of **2**·PPh₃ and **3**·PPh₃

ARTICLE Journal Name

are characterized by multiplet resonances at -7.2 and 2.1 ppm, respectively.

Electron ionization (EI) mass spectra were recorded for the full series of donor adducts 2.Do and 3.Do (introduced as solids). In most cases, we observed the molecular ion peak [(Do)X₂B-SiX₃]*+ and/or the peak corresponding to the donor-free silylborane $[X_2B-SiX_3]^{\bullet+}$, typically with low intensity (X = Cl, I; see the SI for details). Most adducts appear to release their neutral Do ligand under the measurement conditions—except for IDipp, which resists elimination. Prominent fragmentation products included $[(Do)BSiX_4]^+/[BSiX_4]^+$ and $[(Do)BX_2]^+$. The latter may arise either by [SiX₃] • loss from the parent ion or via a concerted pathway: [SiX₂] extrusion from [(Do)X₂B-SiX₃]*+, followed by X* elimination from the resulting [(Do)BX₃]*+ intermediate. This, in turn, raises the question-relevant for later reactivity studies—of whether neutral 2.Do and 3.Do might undergo thermal [SiX₂] extrusion. To probe this, **2**·IDipp was heated with the silylene-trapping reagent 2,3-dimethyl-1,3butadiene (DMB; 10 eq.) in oDFB at 100 °C for 10 d in a flamesealed NMR tube. [Sil₂] was subsequently identified by GC-MS cycloadduct, 1,1-diiodo-3,4-dimethyl-1-silacyclopent-3-ene (Figure S2).¹⁰⁹ Consistently, the reaction mixture showed an ¹¹B NMR signal corresponding to the byproduct BI3-IDipp formed through reductive elimination of [Sil₂] at the Si(IV) center of 2·IDipp (-76.9 ppm; confirmed by comparison with an authentic sample and X-ray crystal structure analysis of a single crystal grown in the NMR tube). All eight adducts 2.Do and 3.Do were structurally characterized by X-ray crystallography (Figures S103-S106 and S109-S112). 110 Given the particular relevance of 2.SMe2 to silaboration reactions (see below), the molecular structures of this compound and its perchlorinated congener 3.SMe2 are shown as representative examples in Figure 2a. All B-Si-bond lengths in 2.Do/3.Do fall within a narrow range of 2.005(3) to 2.043(4) Å, indicating that this parameter is not significantly influenced by either the nature of Do or the halogen ligand. In contrast, the B-Do bond lengths and the degree of pyramidalization at the B atom in the X₂BSi fragments support the a priori expectations that (i) SMe2 is the weakest among the four donors Do, and (ii) the iodinated compound 2 is more Lewis acidic than its chlorinated analogue 3.111

Each molecule of 4 contains two chiral B atoms, giving rise to four possible diastereomers (Figure 2b, left). In the lattice of the examined single crystal, two diastereomers [(S,S)/(S,R)] occupy the same crystallographic site in a 73:27 ratio, which leads to partial disorder involving the B(2)-Si(3) unit. This disorder, together with the comparatively weak scattering contribution of the light B atoms relative to the multiple heavy I atoms, limits the precision with which the B-atom positions and associated structural parameters can be determined. The five-membered ring in **4** features bridging I atoms (B- μ (I)-B and B- μ (I)-Si), resulting in tetracoordinated rather than tricoordinated, electron-deficient B sites (Figure 2b, left).112 This feature prompts speculation that the extremely insoluble species 2 may adopt a polymeric or dimeric structure in the solid state, possibly featuring B2I2Si five-membered rings, with a single I atom replacing the Si(1)I₃ substituent. Moreover, the presence

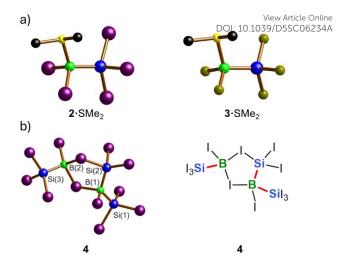


Fig. 2 (a) Solid-state structures of 2·SMe₂ (β-polymorph; left) and 3·SMe₂ (right); (b) solid-state structure of the (S,S)-diastereomer of 4 (left) and its corresponding molecular formula, with one BSi and one BSi₂ moiety highlighted in red (right). H atoms are omitted for clarity. Color code: B: green, C: black, Si: blue, S: yellow, Cl: yellow-green. I: violet.

of both a BSi and a BSi_2 moiety in **4** (indicated by red-colored bonds in Figure 2b, right) suggests that our methodology may provide access not only to perhalogenated silylboranes but also to disilylboranes.

Silaboration reactions with 2·Do and 3·Do

One of the primary motivations for developing 2·Do and 3·Do was to create highly reactive silaboration reagents that allow for the simultaneous introduction of both derivatizable functional groups, ideally under catalyst-free conditions. Ethylene was selected as the initial model substrate for two main reasons: (i) its gaseous nature and lack of activating substituents make its silaboration particularly challenging, and (ii) the expected products are highly symmetric molecules with low molecular weight, which facilitates analysis by NMR spectroscopy and mass spectrometry. 61,94

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 10 Leotshe 2025. Downloaded on 2025-09-15 19:43:18.

Journal Name

ARTICLE

a)
$$= \underbrace{\begin{array}{c} Me_2S \\ I_2B \\ SiI_3 \\ S\cdot SMe_2 \\ Py \\ I_2B \\ SiI_3 \\ \hline \\ Py \\ I_2B \\ SiI_3 \\ \hline \\ S\cdot Py \\ \hline \\ B - Si - I \\ \hline \\ [Et_4N] \\ \hline \\ [Et_4N] \\ \hline \\ CI \\ \hline \\ CI \\ \hline \\ S \\ \hline \\ CI \\ \hline \\ S \\ \hline \\ CI_2B \\ \hline \\ SiCI_3 \\ \hline \\ CI_2B \\ \hline \\ CI_2B \\ \hline \\ CI_2B \\ \hline \\ CI_3 \\ \hline \\ CI_2B \\ \hline \\ CI_3 \\ \hline \\ CI_2B \\ \hline \\ CI_3 \\ \hline \\ CI_3 \\ \hline \\ CI_2B \\ \hline \\ CI_3 \\ \hline \\ CI_4 \\ \hline \\ CI_5 \\ CI_5 \\ \hline \\ CI_5 \\ CI_5 \\ \hline \\ CI_5 \\ CI_5 \\ \hline \\ CI_5 \\ CI_5 \\ \hline \\ CI_5 \\ CI_5 \\ \hline \\$$

Scheme 2 (a) 1,2-Silaborations of ethylene with 2·SMe2 or 2·Py afford 5·SMe2 or 5·Py. (b) 1,1-Silaboration of cyclohexene with [Et₄N]1/Li[Al(OC(CF₃)₃)₄] furnishes 7. (c) Reaction of phenylacetylene with 3-SMe2 leads to the addition of the 3/SMe2 Lewis pair across the C≡C bond to give 8. (d) Solid-state structures of 5.Pv. 7. and 8: H atoms are omitted for clarity. Color code: B: green, C: black, N: pale blue, Si: blue, S: yellow, Cl: vellow-green: I: violet, Reagents and conditions: (i) exc. ethylene, CD₂Cl₂, 80 °C, 6 d, 98% yield; (ii) exc. ethylene, 0.1 eq. BI₃, CD₂CI₂, rt, 12 h, 85% yield; (iii) exc. ethylene, oDFB, 120 °C, 20 d, 97% yield; (iv) 10 eg. cyclohexene, 1 eg. Li[Al(OC(CF₃)₃)₄], oDFB, rt, 15 min, 99% yield; (v) 5 eq. phenylacetylene, CH₂Cl₂, rt,

The reactions were carried out by heating an excess of ethylene with 2.Do or 3.Do in CD2Cl2 or oDFB in sealed NMR tubes (Table 1; Scheme 2a). oDFB was used when high temperatures and/or prolonged reaction times posed a risk of I/Cl exchange with CD₂Cl₂; for NMR measurements, oDFB was replaced with CD₂Cl₂ prior to measurement.

Table 1 Conditions and product distributions for the reactions of the adducts 2:Do or **3**·Do with an excess of ethylene in sealed NMR tubes. DOI: 10.1039/D5SC06234A

adduct	conditions	product(s)	
2 ⋅SMe ₂	CD ₂ Cl ₂ , 6 d, 80 °C	5·SMe ₂ , 98 %	
2·SMe ₂ /0.1 Bl ₃	CD ₂ Cl ₂ , 12 h, rt	5·SMe ₂ , 85 %	
2∙ Py	<i>o</i> DFB, 20 d, 120 °C	5 ·Py, 97 %	
2·PPh₃	oDFB, 20 d, 120°C	5.PPh3, Bl3.PPh3[b]	
2·IDipp	<i>o</i> DFB, 6 d, 100 °C	$Bl_3 \cdot IDipp^{[b]}$	
3 ⋅SMe ₂	CD ₂ Cl ₂ , 31 d, 80 °C	6-SMe ₂ , BCl ₃ ·SMe ₂ ^[b]	
3∙ Py	oDFB, 7 d ^[a] , 120 °C ^[a]	BCl₃·Py ^[b]	
3∙PPh₃	<i>o</i> DFB, 17 d, 120 °C	$BCl_3 \cdot PPh_3^{[b]}$	
3·IDipp	oDFB, 7 d ^[a] , 120 °C ^[a]	$BCl_3 \cdot IDipp^{[b]}$	

[a] After the initial heating period, heating was continued at 140 °C for 1 d and at 160 °C for 1 d. [b] The reaction mixture contained unconsumed starting material.

To evaluate general reactivity trends, we employed the pure silylborane adducts without added promoters. Under these conditions, 2.SMe2 underwent quantitative conversion with to afford the 1,2-silaboration product Me₂S·I₂B-CH₂CH₂-SiI₃ (5·SMe₂; Table 1, Scheme 2a). This transformation proceeded to completion at 80 °C within 6 d. Likewise, 2-Py gave similarly high yields, albeit under even harsher conditions (120 °C, 20 d). At similar temperatures and reaction times, 2.PPh3 was only partially consumed; the fraction that reacted generated both the silaboration product 5.PPh3 the thermolysis product BI₃·PPh₃. Among the perchlorinated analogues, only 3.SMe2 produced a notable amount of the corresponding 1,2-silaboration product. However, this transformation took five times longer than the reaction of 2·SMe2 and furnished Me2S·Cl2B-C2H4-SiCl3 (6.SMe2; Table 1) contaminated with residual starting material and the side product BCl₃·SMe₂. No silaboration was observed for the other adducts 2.Do and 3.Do; instead, they formed varying amounts of BX₃·Do, likely due to thermally induced [SiX₂] extrusion, as discussed above and corroborated by our previous trapping experiments with DMB. To promote the reaction between 2.SMe2 and ethylene, BI3 (0.1 eq.) was added to the mixture. Now, silaboration proceeded smoothly at rt within 12 h, affording 5.SMe2 in high yields (85%; entry 2 in Table 1). This final result of our systematic screening thus offers a practical and efficient access route to this promising functionalized building block. Notably, neither the Li[1]/2/Lil mixture nor free 3 provided further improvement, as both led to pronounced side reactions, presumably including ethylene polymerization. We further emphasize that haloboration did not compete with silaboration under any of the tested conditions

Based on these experimental findings, two key principles emerge to guide further synthetic applications: (i) The highly reactive free species 2 and 3 must be tamed by adduct formation with a suitable donor to prevent non-selective transformations. In this regard, the soft ligand SMe2 performs best in terms of product selectivity while still allowing for reasonable temperatures and reaction times-especially when 0.1 eq. of BI₃ is added as a promoter, which likely generates small concentrations of the free Lewis acids in situ. (ii) The iodinated adducts are more effective in silaborations than their

pen Access Article. Published on 10 Leotshe 2025. Downloaded on 2025-09-15 19:43:18.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

ARTICLE Journal Name

chlorinated congeners. From that, we offer the following mechanistic interpretations: (i) Silaborations with **2**·Do and **3**·Do are apparently not initiated by donor-induced B–Si-bond cleavage. Instead, displacement of Do by π -bonded ethylene must precede the 1,2-addition step (comparable B····olefin complexes have been structurally characterized by Yamaguchi et al. ¹¹³). (ii) To maximize the interaction between the vacant B(p_z) orbital and the π -electron cloud of ethylene, competing π -backbonding from X to B must be minimized, which accounts for the superior suitability of X = I (**2**-type compounds) over Cl (**3**-type compounds). A comprehensive quantum-chemical assessment of the overall reaction mechanism is provided below.

In a second reactivity test, a mixture of 2.SMe2 and the internal olefin cyclohexene in oDFB was heated to 120 °C for 24 d. Subsequent ¹¹B NMR analysis of the sample showed essentially one signal at -11.6 ppm, indicating quantitative and selective conversion. As such forcing reaction conditions lack practical relevance, efforts were directed toward significantly accelerating the reaction prior to detailed product analysis. In this instance, the addition of BI₃ as a promoter did not prove beneficial. However, a successful outcome was ultimately achieved using an equimolar mixture of [Et₄N][1] and $Li[Al(OC(CF_3)_3)_4]$ in oDFB, which effected complete conversion within only 15 min at rt. It is evident that the increased kinetic protection of the C=C double bond in this case suppresses unwanted side reactions, even in the absence of any donor ligand apart from the residual I- ions. More remarkably, olefin internalization exerts a decisive effect on regioselectivity: the reaction with cyclohexene selectively afforded the 1,1silaboration product 7 rather than the 1,2-isomer (Scheme 2). 114 Such a transformation is unprecedented-not only in silaboration but also in the related diboration or disilylation of olefins.115

In a final test experiment, phenylacetylene was chosen as the third representative substrate. Since the iodinated complex 2.SMe2 led to complex product mixtures, we turned to the chlorinated analogue 3. SMe2, which underwent complete conversion at rt after 1 d. From the reaction mixture, the zwitterionic species 8 crystallized in 37% yield (Scheme 2). Unlike 5.Do and 7 (Do = SMe2, Py), 8 is not generated via silaboration but instead represents the typical outcome of a concerted reaction between a free thioether Lewis base and a free borane Lewis acid acting on the same C≡C triple bond. 116-122 This finding thus supports our earlier assumption that replacement of the B-bonded donor Do with the unsaturated substrate constitutes the initial step in the reactions of 2.Do and 3.Do. In the case of olefin substrates, both a boryl and a silyl group are introduced into the molecule. Yet, with phenylacetylene, the B-Si bond remains intact, and SMe2 is instead transferred to the substrate. In 8, the B atom is attached to the terminal position of the resulting olefin, while the SMe₂ substituent resides near the phenyl ring. This can be explained by the fact that the positive charge accumulated on the carbon framework during electrophilic borylation is better stabilized by resonance at the α -position relative to the phenyl ring.

NMR-spectroscopic and X-ray crystallographic characterization of he 5-Do, 7, and 8¹⁰⁷ DOI: 10.1039/D5SC06234A

The ¹¹B NMR spectra of the 1,2-silaboration products, **5**·SMe₂ and **5**·Py, exhibit resonances at –18.9 and –14.0 ppm, respectively, consistent with the presence of tetracoordinated B nuclei. ¹⁰⁸ In contrast, the ¹¹B NMR signal of the 1,1-silaboration product **7** appears at 53.5 ppm, indicative of a tricoordinate B center. ¹⁰⁸ The ²⁹Si NMR shifts of **5**·SMe₂, **5**·Py, and **7** are very similar with values of –115.1, –114.8, and –122.8 ppm, respectively. Furthermore, all three compounds give rise to signals exclusively in the aliphatic region of their ¹H NMR spectra, confirming complete consumption of the C=C double bonds present in the starting materials. The resonances of the axial and equatorial H atoms within the cyclohexyl moiety of compound **7** are distinctly resolved, indicating that bulky substituents on the saturated ring act as effective conformational locks on the NMR timescale. ^{123,124}

The 11 B NMR spectrum of **8** is characterized by a resonance at – 2.6 ppm. As in the cases of **2**-Do and **3**-Do, the 29 Si NMR signal of the B-bonded Si atom is broadened beyond detection. A singlet at $\delta(^{1}$ H) = 7.35, together with a corresponding broad resonance at $\delta(^{13}$ C) = 163.1, is consistent with the presence of an olefinic fragment in **8**.

The molecular structures of 5.SMe₂ (Figure S115), 5.Py, and 7 (Scheme 2d), confirm their proposed identities as 1,2- and 1,1silaboration products, respectively. The C-C-bond length in 5.Py falls within the typical single-bond range (1.533(4) Å), as do all C-C bonds in 7. As expected, 123,124 the bulkier Sil₃ substituent occupies an equatorial position, whereas the less bulky BI₂ group adopts an axial orientation in the cyclohexane ring of 7. In contrast to compound **4** (Figure 2), there is no $B-\mu(I)-Si$ bridge in 7; rather, the boryl group remains trigonal-planar coordinated. Nonetheless, the vacant B(pz) orbital may acquire some electron density from the occupied Si–C σ orbital, reminiscent of the well-known stabilization of carbenium ions bearing β -positioned silyl groups (see below). 125 The C(1)-C(2) distance in compound 8 is 1.335(5) Å, characteristic of a double bond. The S and B atoms adopt a mutual E configuration, with the sterically demanding (silyl)boryl substituent located at the terminal position of the styrene core.

Quantum-chemical calculations rationalizing the 1,2- vs. 1,1-silaboration of ethylene vs. cyclohexene to give $5 \cdot SMe_2$ vs. 7

For the reactions of $2 \cdot \text{SMe}_2$ and $[\text{Et}_4 \text{N}][1]/\text{Li}[\text{Al}(\text{OC}(\text{CF}_3)_3)_4]$ with the olefins, two scenarios were examined: 1,2-silaboration and 1,1-silaboration. Potentially competing haloboration pathways as well as, 126 for $2 \cdot \text{SMe}_2$, the hypothetical addition of the $\text{Me}_2 \text{S}/\text{I}_2 \text{B}-\text{Sil}_3$ Lewis pair to ethylene, were also considered but found to be irrelevant (see the Supporting Information for corresponding reaction pathways, activation barriers, and reaction energies). Figure 3 shows the plausible silaboration sequences for ethylene (a) and cyclohexene (b). As a first important result, the experimentally observed products correspond to pathways that are both kinetically and thermodynamically favored (highlighted in red).

Journal Name ARTICLE

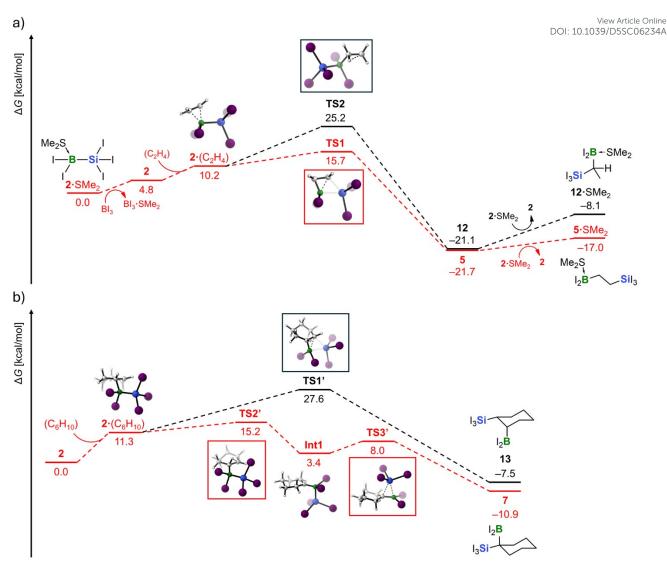


Fig. 3 Computed reaction mechanism for (a) the observed 1,2-silaboration of ethylene with 2-SMe₂/0.1 Bl₃ (red) vs. the not observed 1,1-silaboration pathway (black) and (b) the observed 1,1-silaboration of cyclohexene with 2 (red) vs. the not observed 1,2-silaboration pathway (black). Color code: H: white, B: green, C: grey, Si: blue, I: violet. The Gibbs free energy changes (ΔG) were computed at the SMD(DCM)/PBE0-D3(BJ)/def2-QZVPPD level of theory, using geometries optimized at the SMD(DCM)/PBE0-D3(BJ)/def2-SVPD level.

In the reaction of 2.SMe2 with ethylene, the SMe2 donor must first dissociate to generate a vacant coordination site at the B atom for olefin binding. The dissociation requires an energy input of 14.6 kcal/mol (cf. Figure S134). However, the presence of BI₃ renders the in situ release of the active silaboration reagent 2 significantly less endergonic (2·SMe $_2$ + BI $_3$ \rightarrow 2 + BI₃·SMe₂; $\Delta G = 4.8$ kcal/mol). Subsequent ethylene binding to free 2 is endergonic by an additional 5.4 kcal/mol. The resulting intermediate, 2·(C₂H₄), features a strongly pyramidalized B atom $[\Sigma(I-B-I/Si) = 320.2^{\circ}]$; the ethylene ligand remains essentially planar. 127 The reaction proceeds via transition state TS1, characterized by B-Si-bond cleavage and the concerted formation of a C-Si bond. The 1,2-silaboration product 5 lies -21.7 kcal/mol below the starting materials, with an overall activation barrier of only 15.7 kcal/mol. In the final step, 5 acquires an SMe₂ ligand from 2·SMe₂ to afford 5·SMe₂ and free 2 with a similar endoergicity as observed in the case of **2.**SMe₂/Bl₃, explaining why only minor amounts of Bl₃ are necessary to promote the silaboration at rt. The alternative 1,1-silaboration of ethylene would have to proceed via the much higher-energy transition state **TS2** (ΔG^{\ddagger} = 25.2 kcal/mol relative to the starting materials) and is thus not observed.

Due to the modified protocol used for the silaboration of cyclohexene, dissociation of SMe $_2$ is not an issue here. Instead, free **2** can directly interact with the added olefin. Formation of the primary olefin complex **2**·(C_6H_{10}) is somewhat more endergonic than in the case of ethylene ($\Delta G = 11.3$ vs. 5.4 kcal/mol), which can be attributed partly to steric factors and partly to a more pronounced reorganization energy: While the B atom in **2**·(C_6H_{10}) is comparably pyramidalized as in **2**·(C_2H_4), one B-bonded C atom now also deviates significantly from planarity [$\Sigma(C-C-C/H) = 348.2^\circ$]. Starting from **2**·(C_6H_{10}), two subsequent transition states are most relevant: **TS1**′ leads, via an overall activation barrier of 27.6 kcal/mol, to the

ARTICLE Journal Name

(experimentally unobserved) syn-1,2-silaboration product (ΔG = -7.5 kcal/mol). In contrast, **TS2'**, which lies 12.4 kcal/mol lower in energy than **TS1'**, corresponds to a 1,2-hydride shift leading to intermediate **Int1**. Subsequent 1,2-silyl migration via the low-lying **TS3'** furnishes the experimentally obtained 1,1-silaboration product **7**, with an overall reaction energy of ΔG = -10.9 kcal/mol.

be described as a σ -type donor-acceptor complex, aincluding charge is transferred from the occupied \Re -orbital of the Gerial to the vacant orbital at the B atom, resulting in a substantial interaction energy of -313 kcal/mol. ¹²⁹ Notably, an *Intrinsic Bond Orbital* (IBO) ¹³⁰ analysis even suggests the presence of a C-B-C two-electron–three-center (2e3c) bond, with relative contributions of 29.4% (B), 35.4% (C(1)), and 34.7% (C(2); Figure

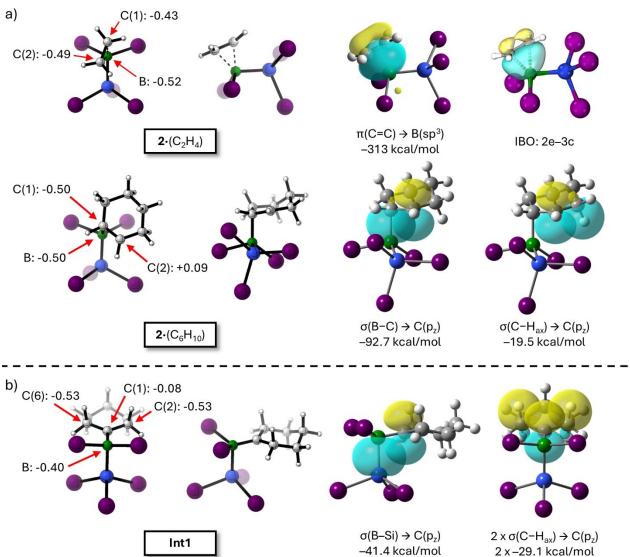


Fig. 4 NBO and IBO analyses rationalizing the divergent silaboration pathways of ethylene and cyclohexene. ¹²⁹ Color code: H: white, B: green, C: grey, Si: blue, I: violet. (a) Left: Optimized structures of $\mathbf{2} \cdot \mathbf{C}_2 H_4$ (top) and $\mathbf{2} \cdot \mathbf{C}_6 H_{10}$ (bottom) with selected NBO charges given in elementary charges (e); right: key orbital interactions with associated stabilization energies; top right: IBO representation of the two-electron–three-center (2e3c) bond in $\mathbf{2} \cdot \mathbf{C}_2 H_4$. (b) Left: Optimized structure of Int1 with selected NBO charges given in elementary charges (e); right: hyperconjugative interactions stabilizing the carbenium ion, including the β-silicon effect and C–H_{ax} σ donation; SMD(DCM)/PBE0-D3(BJ)/def2-SVPD level of theory.

The differing regioselectivities observed in the silaborations of ethylene and cyclohexene arise as early as in intermediates $\mathbf{2} \cdot (C_2H_4)$ and $\mathbf{2} \cdot (C_6H_{10})$: In $\mathbf{2} \cdot (C_2H_4)$, the ethylene coordination is near symmetric with B–C distances of 1.837 and 1.868 Å; the C(2)-C(1)–B–Si torsion angle is 23.0°, which represents an ideal conformation for an ensuing 1,2-silyl shift (Figure 4a, left). According to a *Natural Bond Orbital* (NBO) analysis, ¹²⁸ all three atoms–B, C(1), and C(2)–carry negative partial charges of –0.52, –0.43, and –0.49 e, respectively. Intermediate $\mathbf{2} \cdot (C_2H_4)$ can thus

4a, right). In $2 \cdot (C_6H_{10})$, olefin binding is markedly unsymmetric, likely due to the higher steric bulk of cyclohexene relative to ethylene (Figure 4a, left):¹³¹ a short σ bond is found between the B center and the pyramidalized C(1) atom (1.829 Å), while the distance to the still planar C(2) atom is significantly longer (B···C = 2.356 Å). Concomitantly, the torsion angle C(2)–C(1)–B–Si is increased to 52.0°, thereby disfavoring a 1,2-silyl shift due to the longer Si···C(2) distance that would have to be traversed in the corresponding transition state. While the NBO charges on

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 10 Leotshe 2025. Downloaded on 2025-09-15 19:43:18.

ARTICLE

B and C(1) in $2 \cdot (C_6H_{10})$ remain comparably negative to those in 2·(C₂H₄), C(2) now carries a positive charge of +0.09 e. Cyclohexene can accommodate the steric constraints, as the carbenium ion at C(2) is stabilized by both the +I effect of the alkyl substituent and hyperconjugative interactions 132-134 between its vacant pz orbital and the neighboring B-C and C- H_{ax} σ bonds with contributions worth -92.7 and -19.5 kcal/mol¹²⁹ (Figure 4a, right; see section 6.3.6 in the SI for a comparison with 3·(C₆H₁₀) where an NBO analysis reveals that 3 is coordinated primarily through a conventional, symmetric $\pi \rightarrow$ B interaction, most likely reflecting the lower Lewis acidity of 3). Similar hyperconjugative interactions as described for $2 \cdot (C_6H_{10})$ are also present in the rearrangement intermediate Int1-this time between the carbenium ion's p_z orbital and the B–Si σ bond or two equivalent C- $H_{ax} \sigma$ bonds (relative energy contributions: -41.4 and 2 x -29.1 kcal/mol, respectively; Figure 4b, right). The former interaction corresponds to the well-known β -effect of a silyl group. 125 The overall stabilizing influence of steric and electronic factors makes Int1 thermodynamically more favorable than $2 \cdot (C_6H_{10})$. In summary, the distinct regioselectivities in ethylene and cyclohexene silaboration originate from substrate-dependent binding geometries to 2: symmetric coordination of ethylene facilitates direct 1,2silaboration, whereas the unsymmetric activation cyclohexene favors a stepwise 1,1-pathway via a stabilized carbenium ion intermediate. The computed energy profiles and bonding analyses offer a coherent explanation for the experimentally observed selectivities and underscore the critical influence of steric and electronic substrate effects in directing the specific silaboration pathway.

Conclusions

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

pen Access Article. Published on 10 Leotshe 2025. Downloaded on 2025-09-15 19:43:18.

The addition of a reactant X-Y across a C=C double bond is a perfectly atom-economic transformation. When employing versatile (orthogonal) functional groups for X and Y, the primary addition products can be made valuable platforms for a wide range of applications. This applies especially to X-Y-type reactants featuring covalently bonded boryl and silyl groups: both substituents are not only among the most versatile handles for downstream functionalization, but also play key roles as property-defining units in organic functional materials. Consequently, there is a growing demand for the development of novel silaboration reactions and tailored silylborane reagents R₂B-SiR₃. We have now found a way to make perhalogenated derivatives (R = Cl, I) readily accessible on a multigram scale-both as free Lewis acids (e.g., Cl₂B-SiCl₃) and as Lewis base adducts ($Do \cdot R_2B - SiR_3$; $Do = SMe_2$, Py, PPh₃, IDipp). These developments create a versatile platform with the following key features: (i) Me₂S·I₂B-SiI₃ and the in situ-generated mixture Li[I₃B-SiI₃]/I₂B-SiI₃/LiI react directly with olefins in silaboration reactions without the need for a catalyst, which is virtually without precedent. 135 (ii) Cyclohexene undergoes a 1,1-addition reaction-so far unobserved not only for silaborations, but also diboration and disilylation reactions. Combined experimental and quantum-chemical studies revealed that the steric demand of cyclohexene renders symmetrical

coordination of the olefin to the B site unfavorable and instead promotes the formation of a zwitterlorlid BE (Sp3) C (Sp3) C⊕(sp²) fragment as a key entry point for the 1,1-silaboration cascade. While such a motif is prohibitively high in energy for ethylene, the carbenium center in the zwitterionic cyclohexene intermediate is efficiently stabilized through a combination of positive inductive (+I) and hyperconjugative effects. (iii) The halide substituents on the introduced boryl and silyl units enable diverse late-stage derivatizations-an aspect of particular importance when these functional groups are not merely used for transmetallation purposes in C-C-coupling reactions, but are instead retained as property-defining elements in the final molecule. (iv) Bulk Cl₂B-SiCl₃ can be distilled without decomposition. Considering that Si₂Cl₆ has been successfully used for the gas-phase deposition of silicon thin films, 136 and B_2F_4 for their boron doping, 137,138 Cl_2B -SiCl₃ emerges as a single-source precursor for semiconductor fabrication. Taken together, these findings pave the way for the future utilization of perhalogenated silylboranes in both synthesis (i-iii) and material science (iv).

Author contributions

J. H. performed the experimental studies and characterized all new compounds. C. D. B. performed the quantum-chemical calculations. A. V. V. and E. P. performed the X-ray crystal structure analyses of all compounds. H.-W. L., F. F. and M. W. supervised the project. The manuscript was written by J. H., C. D. B. and M. W. and edited by all co-authors.

Conflicts of interest

There are no conflicts to declare.

Data availability

The data supporting this article have been included as part of the Supplementary Information.†

Acknowledgements

We thank the Center for Biomolecular Magnetic Resonance (BMRZ, Goethe University Frankfurt) for the solid-state NMR measurements. J.H. and C.B. thank Jannik Gilmer for helpful discussions. We acknowledge the microanalytical laboratory Pascher for the elemental analyses.

Notes and references

- S. A. Westcott and E. Fernández, in Adv. Organometal. Chem., Academic Press, Cambridge, 2015, vol. 63, pp. 39-89.
- H. Braunschweig and R. D. Dewhurst, 'Single, Double, Triple bonds and Chains: The Formation of Electron-Precise B-B bonds', Angew. Chem. Int. Ed., 2013, 52, 3574-3583.
- R. D. Dewhurst, E. C. Neeve, H. Braunschweig and T. B. Marder, 'sp²-sp³ diboranes: astounding structural variability

Journal Name

ARTICLE

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Article. Published on 10 Leotshe 2025. Downloaded on 2025-09-15 19:43:18.

- and mild sources of nucleophilic boron for organic synthesis', *Chem. Commun.*, 2015, **51**, 9594–9607.
- 4 M. Arrowsmith, H. Braunschweig and T. E. Stennett, Wiley-VCH Verlag, 2017, preprint, DOI: 10.1002/anie.201610072.
- M. Arrowsmith, J. Böhnke, H. Braunschweig, A. Deißenberger, R. D. Dewhurst, W. C. Ewing, C. Hörl, J. Mies and J. H. Muessig, 'Simple solution-phase syntheses of tetrahalodiboranes(4) and their labile dimethylsulfide adducts', *Chem. Commun.*, 2017, 53, 8265–8267.
- 6 J. Teichmann and M. Wagner, 'Silicon chemistry in zero to three dimensions: from dichlorosilylene to silafullerane', Chem. Commun., 2018, 54, 1397–1412.
- 7 J. A. Morrison, 'Chemistry of the Polyhedral Boron Halides and the Diboron Tetrahalides', *Chem. Rev.*, 1991, **91**, 35–48.
- 8 T. B. Marder and N. C. Norman, 'Transition metal catalysed diboration', *Top. Catal.*, 1998, **5**, 63–73.
- 9 Y. J. Lin, C. H. Liu, M. G. Chin, C. C. Wang, S. H. Wang, H. Y. Tsai, J. R. Chen, E. Y. Ngai and R. Ramachandran, 'Characterization of Shock-Sensitive Deposits from the Hydrolysis of Hexachlorodisilane', ACS Omega, 2019, 4, 1416–1424.
- 10 Y. J. Lin, T. T. Nguyen, M. G. Chin, C. C. Wang, C. H. Liu, H. Y. Tsai, J. R. Chen, E. Y. Ngai and R. Ramachandran, 'Disposal of hexachlorodisilane and its hydrolyzed deposits', *J. Loss Prev. Proc. Ind.*, 2020, **65**, 1–8.
- 11 G. Urry, J. Kerrigan, T. D. Parsons and H. I. Schlesinger, 'Diboron Tetrachloride, B₂Cl₄, as a Reagent for the Synthesis of Organo-boron Compounds. I. The Reaction of Diboron Tetrachloride with Ethylene', *J. Am. Chem. Soc.*, 1954, **76**, 5299–5301.
- 12 P. Ceron, A. Finch, J. Frey, J. Kerrigan, T. Parsons, G. Urry and H. I. Schlesinger, 'Diboron Tetrachloride and Tetrafluoride as Reagents for the Synthesis of Organoboron Compounds. II. The Behavior of the Diboron Tetrahalides toward Unsaturated Organic Compounds', J. Am. Chem. Soc., 1959, 81, 6368–6371.
- 13 T. Wartik and W. B. Fox, 'Reaction of Diboron Tetrachloride with Aromatic Substances', J. Am. Chem. Soc., 1961, 83, 498– 499.
- 14 J. Feeney, A. K. Holliday and F. J. Marsden, 'Diboron Tetrachloride-Olefin Compounds. Part III. The Reaction of Diboron Tetrachloride with Trichloroethylene, Isobutene, and cis- and trans-But-2-ene', J. Am. Chem. Soc., 1961, 356–360.
- M. Zeldin and A. Rosen, 'The Chemistry of Tetrachlorodiborane(4): I. Reactions with Cyclic Olefins', J. Organomet. Chem., 1971, 31, 319–328.
- 16 M. Zeldin and A. Rosen, 'The Chemistry of Tetrachlorodiborane(4): II. Reactions with Saturated Ring Hydrocarbons', J. Organomet. Chem., 1972, 34, 259–268.
- 17 W. Siebert, M. Hildenbrand, P. Hornbach, G. Karger and H. Pritzkow, '1,2- und 1,1-Diborylalkene', Z. Naturforsch. B, 1989, 44, 1179–1186.
- 18 J. Tillmann, L. Meyer, J. I. Schweizer, M. Bolte, H. W. Lerner, M. Wagner and M. C. Holthausen, 'Chloride-Induced Aufbau of Perchlorinated Cyclohexasilanes from Si₂Cl₆: A Mechanistic Scenario', Chem. Eur. J., 2014, 20, 9234–9239.
- 19 J. Teichmann, M. Bursch, B. Köstler, M. Bolte, H. W. Lerner, S. Grimme and M. Wagner, 'Trapping Experiments on a Trichlorosilanide Anion: a Key Intermediate of Halogenosilane Chemistry', Inorg. Chem., 2017, 56, 8683–8688.
- 20 E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A. Westcott and T. B. Marder, 'Diboron(4) Compounds: From Structural Curiosity to Synthetic Workhorse', Chem. Rev., 2016, 116, 9091–9161.
- 21 J. Takaya and N. Iwasawa, 'Catalytic, Direct Synthesis of Bis(boronate) Compounds', ACS Catal., 2012, 2, 1993–2006.
- 22 I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy and J. F. Hartwig, 'C–H Activation for the Construction of C–B Bonds', *Chem. Rev.*, 2010, **110**, 890–931.

- 23 M. Hildenbrand, H. Pritzkow, U. Zenneck and W. Siebert 'Synthesis and Structure of a 1,3-phydro திற்று நட்கு Angew. Chem. Int. Ed. Engl., 1984, 23, 371–372.
- 24 P. Hornbach, M. Hildenbrand, H. Pritzkow and W. Siebert, 'A Puckered and a Planar 1,3-Diboretane', *Angew. Chem. Int. Ed. Engl.*, 1986, **25**, 1112–1114.
- 25 H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki and A. Vargas, 'Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond', *Science* (1979), 2012, **336**, 1420–1422.
- 26 J. Böhnke, H. Braunschweig, W. C. Ewing, C. Hörl, T. Kramer, I. Krummenacher, J. Mies and A. Vargas, 'Diborabutatriene: An Electron-Deficient Cumulene', *Angew. Chem. Int. Ed.*, 2014, **53**, 9082–9085.
- 27 J. Böhnke, H. Braunschweig, T. Dellermann, W. C. Ewing, K. Hammond, J. O. C. Jimenez-Halla, T. Kramer and J. Mies, 'The Synthesis of $B_2(SIDip)_2$ and its Reactivity Between the Diboracumulenic and Diborynic Extremes', *Angew. Chem. Int. Ed.*, 2015, **54**, 13801–13805.
- 28 H. Braunschweig, S. Demeshko, W. C. Ewing, I. Krummenacher, B. B. Macha, J. D. Mattock, F. Meyer, J. Mies, M. Schäfer and A. Vargas, 'A Binuclear 1,1'-Bis(boratabenzene) Complex: Unprecedented Intramolecular Metal–Metal Communication through a B–B Bond', Angew. Chem. Int. Ed., 2016, 55, 7708–7711.
- 29 W. Lu, Y. Li, R. Ganguly and R. Kinjo, 'Alkene–Carbene Isomerization induced by Borane: Access to an Asymmetrical Diborene', J. Am. Chem. Soc., 2017, 139, 5047–5050.
- 30 G. Urry, 'Systematic Synthesis in the Polysilane Series', Acc. Chem. Res., 1970, **3**, 306–312.
- 31 J. I. Schweizer, M. G. Scheibel, M. Diefenbach, F. Neumeyer, C. Würtele, N. Kulminskaya, R. Linser, N. Auner, S. Schneider and M. C. Holthausen, 'A Disilene Base Adduct with a Dative Si–Si Single Bond', *Angew. Chem. Int. Ed.*, 2016, **55**, 1782– 1786.
- 32 C. Kunkel, M. Bolte, H. W. Lerner, P. Albert and M. Wagner, 'Subvalent mixed Si_xGe_y oligomers: (Cl₃Si)₄Ge and Cl₂(Me₂EtN)SiGe(SiCl₃)₂', Chem. Commun., 2021, **57**, 12028–12031.
- 33 I. Georg, J. Teichmann, M. Bursch, J. Tillmann, B. Endeward, M. Bolte, H. W. Lerner, S. Grimme and M. Wagner, 'Exhaustively Trichlorosilylated C₁ and C₂ Building Blocks: Beyond the Müller–Rochow Direct Process', J. Am. Chem. Soc., 2018, 140, 9696–9708.
- 34 I. Georg, M. Bursch, J. B. Stückrath, E. Alig, M. Bolte, H. W. Lerner, S. Grimme and M. Wagner, 'Building up Strain in One Step: Synthesis of an Edge-Fused Double Silacyclobutene from an Extensively Trichlorosilylated Butadiene Dianion', *Angew. Chem. Int. Ed.*, 2020, **59**, 16181–16187.
- 35 I. Georg, M. Bursch, B. Endeward, M. Bolte, H. W. Lerner, S. Grimme and M. Wagner, 'The power of trichlorosilylation: isolable trisilylated allyl anions, allyl radicals, and allenyl anions', *Chem. Sci.*, 2021, **12**, 12419–12428.
- 36 M. Schmidt, J. Gilmer, A. Virovets, M. Bolte, H.-W. Lerner and M. Wagner, 'Adjusting the Number of Functional Groups in Vicinal Bis(trichlorosilylated) Benzenes', Chem. Eur. J., 2024, 30, e202402998.
- 37 J. Tillmann, M. Moxter, M. Bolte, H. W. Lerner and M. Wagner, 'Lewis Acidity of Si₆Cl₁₂ and Its Role as Convenient SiCl₂ Source', *Inorg. Chem.*, 2015, **54**, 9611–9618.
- 38 J. Teichmann, B. Köstler, J. Tillmann, M. Moxter, R. Kupec, M. Bolte, H. W. Lerner and M. Wagner, 'Halide-Ion Diadducts of Perhalogenated Cyclopenta- and Cyclohexasilanes', *Z. Anorg. Allg. Chem.*, 2018, **644**, 956–962.
- 39 J. Teichmann, C. Kunkel, I. Georg, M. Moxter, T. Santowski, M. Bolte, H. W. Lerner, S. Bade and M. Wagner, 'Tris(trichlorosilyl)tetrelide Anions and a Comparative Study of Their Donor Qualities', Chem. Eur. J., 2019, 25, 2740–2744.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Article. Published on 10 Leotshe 2025. Downloaded on 2025-09-15 19:43:18.

Journal Name

Science Accepted Manus

- 40 B. Köstler, H. Bae, J. Gilmer, A. Virovets, H. W. Lerner, P. Albert, F. Fantuzzi and M. Wagner, 'Dope it with germanium: selective access to functionalized Si₅Ge heterocycles', Chem. Commun., 2022, 59, 716–719.
- 41 B. Köstler, F. Jungwirth, L. Achenbach, M. Sistani, M. Bolte, H. W. Lerner, P. Albert, M. Wagner and S. Barth, 'Mixed-Substituted Single-Source Precursors for Si_{1-x}Ge_xThin Film Deposition', *Inorg. Chem.*, 2022, **61**, 17248–17255.
- 42 R. Behrle, V. Krause, M. S. Seifner, B. Köstler, K. A. Dick, M. Wagner, M. Sistani and S. Barth, 'Electrical and Structural Properties of Si_{1-x}Ge_x Nanowires Prepared from a Single-Source Precursor', Nanomaterials, 2023, 13, 627.
- 43 J. Tillmann, J. H. Wender, U. Bahr, M. Bolte, H. Lerner, M. C. Holthausen and M. Wagner, 'One-Step Synthesis of a [20]Silafullerane with an Endohedral Chloride Ion', *Angew. Chem. Int. Ed.*, 2015, **54**, 5429–5433.
- 44 B. Köstler, M. Bolte, H. W. Lerner and M. Wagner, 'Selective One-Pot Syntheses of Mixed Silicon-Germanium Heteroadamantane Clusters', *Chem. Eur. J.*, 2021, **27**, 14401–14404.
- 45 M. Bamberg, M. Bursch, A. Hansen, M. Brandl, G. Sentis, L. Kunze, M. Bolte, H. W. Lerner, S. Grimme and M. Wagner, '[Cl@Si₂₀H₂₀]⁻: Parent Siladodecahedrane with Endohedral Chloride Ion', *J. Am. Chem. Soc.*, 2021, **143**, 10865–10871.
- 46 M. Bamberg, T. Gasevic, M. Bolte, A. Virovets, H. W. Lerner, S. Grimme, M. Bursch and M. Wagner, 'Brominated [20]silafulleranes: pushing the limits of steric loading', Chem. Commun., 2023, 59, 7459–7462.
- 47 M. Bamberg, T. Gasevic, M. Bolte, A. Virovets, H. W. Lerner, S. Grimme, M. Bursch and M. Wagner, 'Regioselective Derivatization of Silylated [20]Silafulleranes', J. Am. Chem. Soc., 2023, 145, 11440–11448.
- 48 B. Köstler, J. Gilmer, M. Bolte, A. Virovets, H. W. Lerner, P. Albert, F. Fantuzzi and M. Wagner, 'Group IV heteroadamantanes: synthesis of Si₆Sn₄ and site-selective derivatization of Si₆Ge₄', Chem. Commun., 2023, 59, 2295–2298.
- 49 S. Kühn, B. Köstler, C. True, L. Albers, M. Wagner, T. Müller and C. Marschner, 'Selective synthesis of germasilaadamantanes through germanium-silicon shift processes', Chem. Sci., 2023, 14, 8956–8961.
- 50 T. Gasevic, M. Bamberg, J. Wicke, M. Bolte, A. Virovets, H. W. Lerner, S. Grimme, A. Hansen, M. Wagner and M. Bursch, 'Confined Lewis Pairs: Investigation of the X⁻→Si₂₀ Interaction in Halogen-Encapsulating Silafulleranes', *Angew. Chem. Int. Ed.*, 2024, 63, e202314238.
- 51 F. Raaii and M. S. Gordon, 'Potential Energy Surfaces for the Bis-Silylation of Ethylene', J. Phys. Chem. A, 1998, **102**, 4666–4669
- 52 Y. Alexeev and M. S. Gordon, 'Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride', *Organometallics*, 2003, **22**, 4111–4117.
- 53 D. G. Hall, Ed., Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, Wiley-VCH, Weinheim, 2011.
- 54 J. W. B. Fyfe and A. J. B. Watson, 'Recent Developments in Organoboron Chemistry: Old Dogs, New Tricks', *Chem*, 2017, **3**, 31–55.
- 55 M. Oestreich and T. Hiyama, Eds., Organosilicon Chemistry: Novel Approaches and Reactions, Wiley-VCH, Weinheim, 2019.
- 56 J. J. Feng, W. Mao, L. Zhang and M. Oestreich, 'Activation of the Si–B interelement bond related to catalysis', *Chem. Soc. Rev.*, 2021, **50**, 2010–2073.
- 57 M. Oestreich, E. Hartmann and M. Mewald, 'Activation of the Si–B Interelement Bond: Mechanism, Catalysis, and Synthesis', Chem. Rev., 2013, 113, 402–441.

- 58 T. Ohmura and M. Suginome, 'Silylboranes as New Tools in Organic Synthesis', Bull. Chem. Soc. Jpp. 2009.83, 23049234A
- 59 R. Koyanagi, M. Tanaka, Y. Nonaka, K. Mori, S. Morisako, Y. Yamamoto and A. Kawachi, 'Preparation and Reactions of (Hydrosilyl)diarylborane', Eur. J. Inorg. Chem., 2025, 28, e202500068.
- 60 R. Takahashi, J. Jiang, S. Maeda and H. Ito, 'Introducing Steric Bulk into Silylboranes: Enhanced Bench Stability and Novel Chemical Reactivity', *Angew. Chem. Int. Ed.*, 2025, e202506194.
- 61 M. Suginome, H. Nakamura and Y. Ito, 'Platinum-Catalyzed Regioselective Silaboration of Alkenes', *Angew. Chem. Int. Ed. Engl.*, 1997, **36**, 2516–2518.
- 62 M. Suginome, T. Matsuda, T. Yoshimoto and Y. Ito, 'Stereoselective 1,4-silaboration of 1,3-dienes catalyzed by nickel complexes', *Org. Lett.*, 1999, **1**, 1567–1569.
- 63 G. Durieux, M. Gerdin, C. Moberg and A. Jutand, 'Rate and Mechanism of the Oxidative Addition of a Silylborane to Pt⁰ Complexes – Mechanism for the Pt-Catalyzed Silaboration of 1,3-Cyclohexadiene', Eur. J. Inorg. Chem., 2008, 4236–4241.
- 64 M. Suginome, H. Nakamura and Y. Ito, 'Regio-and stereo-selective silaboration of alkynes catalysed by palladium and platinum complexes', *Chem. Commun.*, 1996, 2777–2778.
- 65 S.-Y. Onozawa, Y. Hatanaka and M. Tanaka, 'Palladium-catalysed borylsilylation of alkynes and borylsilylative carbocyclization of diynes and an enyne compound', *Chem. Commun.*, 1997, 1229–1230.
- 66 M. Suginome, T. Matsuda and Y. Ito, 'Nickel-Catalyzed Silaborative Dimerization of Alkynes', *Organometallics*, 1998, 17, 5233–5235.
- 67 M. Suginome, T. Matsuda, H. Nakamura and Y. Ito, 'Regio-and Stereoselective Synthesis of (Z)-β-Silylalkenylboranes by Silaboration of Alkynes Catalyzed by Palladium and Platinum Complexes', *Tetrahedron*, 1999, **55**, 8787–8800.
- 68 T. Sagawa, Y. Asano and F. Ozawa, 'Synthesis and Reactions of cis-Sily(boryl)platinum(II) Complexes', Organometallics, 2002, 21, 5879–5886.
- 69 T. Ohmura, K. Oshima and M. Suginome, 'Palladium-catalysed cis- and trans-silaboration of terminal alkynes: complementary access to stereo-defined trisubstituted alkenes', Chem. Commun., 2008, 1416–1418.
- 70 T. Ohmura, K. Oshima, H. Taniguchi and M. Suginome, 'Switch of Regioselectivity in Palladium-Catalyzed Silaboration of Terminal Alkynes by Ligand-Dependent Control of Reductive Elimination', J. Am. Chem. Soc., 2010, 132, 12194–12196.
- 71 M. B. Ansell, J. Spencer and O. Navarro, '(N-Heterocyclic Carbene)₂-Pd(0)-Catalyzed Silaboration of Internal and Terminal Alkynes: Scope and Mechanistic Studies', *ACS Catal.*, 2016, **6**, 2192–2196.
- 72 M. Zhao, C. C. Shan, Z. L. Wang, C. Yang, Y. Fu and Y. H. Xu, 'Ligand-Dependent-Controlled Copper-Catalyzed Regio- And Stereoselective Silaboration of Alkynes', *Org. Lett.*, 2019, **21**, 6016–6020.
- 73 H. Ito, Y. Horita and E. Yamamoto, 'Potassium tert-butoxide-mediated regioselective silaboration of aromatic alkenes', Chem. Commun., 2012, 48, 8006–8008.
- 74 E. Yamamoto, R. Shishido, T. Seki and H. Ito, 'Tris(trimethylsilyl)silylboronate Esters: Novel Bulky, Air- and Moisture-Stable Silylboronate Ester Reagents for Boryl Substitution and Silaboration Reactions', Organometallics, 2017, 36, 3019–3022.
- 75 Y. Gu, Y. Duan, Y. Shen and R. Martin, 'Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes', *Angew. Chem. Int. Ed.*, 2020, **59**, 2061–2065.
- 76 K. Nagao, H. Ohmiya and M. Sawamura, 'Anti-Selective Vicinal Silaboration and Diboration of Alkynoates through Phosphine Organocatalysis', Org. Lett., 2015, 17, 1304–1307.

ARTICLE Journal Name

- 77 K. Oshima, K. Kurotobi, M. Suginome, Y. Takano, T. Umeyama and H. Imahori, 'Dearomatizing conversion of pyrazines to 1,4-dihydropyrazine derivatives *via* transition-metal-free diboration, silaboration, and hydroboration', *Chem. Commun.*, 2012, **48**, 8571–8573.
- 78 Y. Morimasa, K. Kabasawa, T. Ohmura and M. Suginome, 'Pyridine-Based Organocatalysts for Regioselective syn-1,2-Silaboration of Terminal Alkynes and Allenes', Asian J. Org. Chem., 2019, 8, 1092–1096.
- 79 E. Yamamoto, K. Izumi, Y. Horita and H. Ito, 'Anomalous Reactivity of Silylborane: Transition-Metal-Free Boryl Substitution of Aryl, Alkenyl, and Alkyl Halides with Silylborane/Alkoxy Base Systems', J. Am. Chem. Soc., 2012, 134, 19997–20000.
- 80 E. Yamamoto, K. Izumi, Y. Horita, S. Ukigai and H. Ito, 'Formal Nucleophilic Boryl Substitution of Organic Halides with Silylborane/Alkoxy Base System', *Top. Catal.*, 2014, **57**, 940–945.
- 81 E. Yamamoto, S. Ukigai and H. Ito, 'Boryl substitution of functionalized aryl-, heteroaryl- and alkenyl halides with silylborane and an alkoxy base: expanded scope and mechanistic studies', *Chem. Sci.*, 2015, **6**, 2943–2951.
- 82 R. Uematsu, E. Yamamoto, S. Maeda, H. Ito and T. Taketsugu, 'Reaction Mechanism of the Anomalous Formal Nucleophilic Borylation of Organic Halides with Silylborane: Combined Theoretical and Experimental Studies', J. Am. Chem. Soc., 2015, 137, 4090–4099.
- 83 E. Yamamoto, K. Izumi, R. Shishido, T. Seki, N. Tokodai and H. Ito, 'Direct Introduction of a Dimesitylboryl Group Using Base-Mediated Substitution of Aryl Halides with Silyldimesitylborane', Chem. Eur. J., 2016, 22, 17547–17551.
- 84 E. Yamamoto, S. Maeda, T. Taketsugu and H. Ito, 'Transition-Metal-Free Boryl Substitution Using Silylboranes and Alkoxy Bases', Synlett, 2017, 28, 1258–1267.
- 85 J. M. O'Brien and A. H. Hoveyda, 'Metal-Free Catalytic C–Si Bond Formation in an Aqueous Medium. Enantioselective NHC-catalyzed Silyl Conjugate Additions to Cyclic and Acyclic α , β -Unsaturated Carbonyls', *J. Am. Chem. Soc.*, 2011, **133**, 7712–7715.
- 86 C. Kleeberg and C. Borner, 'On the Reactivity of Silylboranes toward Lewis Bases: Heterolytic B–Si Cleavage vs. Adduct formation', Eur. J. Inorg. Chem., 2013, 2799–2806.
- 87 C. Kleeberg, 'On the structural diversity of [K(18-crown-6)EPh₃] complexes (E = C, Si, Ge, Sn, Pb): Synthesis, crystal structures and NOESY NMR study', *Dalton Trans.*, 2013, **42**, 8276–8287.
- 88 J. Plotzitzka and C. Kleeberg, '[(NHC)Cu¹–ER₃] Complexes (ER₃ = SiMe₂Ph, SiPh₃, SnMe₃): From Linear, Mononuclear Complexes to Polynuclear Complexes with Ultrashort Cu¹···Cu¹ Distances', Inorg. Chem., 2016, **55**, 4813–4823.
- 89 J. Plotzitzka and C. Kleeberg, '[(18-C-6)K][(N≡C)Cuⁱ–SiMe₂Ph], a Potassium Silylcyanocuprate as a Catalyst Model for Silylation Reactions with Silylboranes: Syntheses, Structures, and Catalytic Properties', *Inorg. Chem.*, 2017, **56**, 6671–6680.
- 90 P. Gao, G. Wang, L. Xi, M. Wang, S. Li and Z. Shi, 'Transition-Metal-Free Defluorosilylation of Fluoroalkenes with Silylboronates', *Chin. J. Chem.*, 2019, **37**, 1009–1014.
- 91 R. Shishido, M. Uesugi, R. Takahashi, T. Mita, T. Ishiyama, K. Kubota and H. Ito, 'General Synthesis of Trialkyl- and Dialkylarylsilylboranes: Versatile Silicon Nucleophiles in Organic Synthesis', J. Am. Chem. Soc., 2020, 142, 14125–14133.
- 92 A. B. Cuenca, R. Shishido, H. Ito and E. Fernández, 'Transition-metal-free B–B and B–interelement reactions with organic molecules', *Chem. Soc. Rev.*, 2017, **46**, 415–430.
- 93 J. Gilmer, M. Bolte, A. Virovets, H. W. Lerner, F. Fantuzzi and M. Wagner, 'A Hydride-Substituted Homoleptic Silylborate:

- How Similar is it to its Diborane(6)-Dianion Isostere?' Chem. Eur. J., 2023, 29, e202203119.
- 94 J. Gilmer, T. Trageser, L. Čaić, A. Virovets, M. Bolte, H. W. Lerner, F. Fantuzzi and M. Wagner, 'Catalyst-free diboration and silaboration of alkenes and alkynes using bis(9-heterofluorenyl)s', Chem. Sci., 2023, 14, 4589–4596.
- 95 S. Bochmann, U. Böhme, E. Brendler, M. Friebel, M. Gerwig, F. Gründler, B. Günther, E. Kroke, R. Lehnert and L. Ruppel, 'Unexpected Formation of the Highly Symmetric Borate Ion [B(SiCl₃)₄]-', Eur. J. Inorg. Chem., 2021, 2583–2594.
- 96 P. Greiwe, A. Bethäuser, H. Pritzkow, T. Kühler, P. Jutzi and W. Siebert, 'Borane-stabilized Boranediyls (Borylenes): Neutral *nido*-1-Borane-2,3,4,5,6-pentamethyl-2,3,4,5,6-pentacarbahexaboranes(6)', *Eur. J. Inorg. Chem.*, 2000, 1927–1929.
- 97 N. Sen, N. Parvin, S. Tothadi and S. Khan, 'Reactivity of $(TMS)_2N(\eta^1-Cp^*)Si=Si(\eta^1-Cp^*)N(TMS)_2$ toward the Halides of Groups 13–15', Organometallics, 2021, **40**, 1874–1883.
- 98 A. Stock, A. Brandt and H. Fischer, 'Der Zink-Lichtbogen als Reduktionsmittel', Ber. Dtsch. Chem. Ges. A/B, 1925, 58, 643– 657.
- 99 T. Wartik, R. Moore and H. I. Schlesinger, 'Derivatives of Diborine', J. Am. Chem. Soc., 1949, 71, 3265–3266.
- 100 G. Urry, T. Wartik, R. E. Moore and H. I. Schlesinger, 'The Preparation and Some of the Properties of Diboron Tetrachloride, B₂Cl₄', *J. Am. Chem. Soc.*, 1954, **76**, 5293–5298.
- 101 H. Nöth and H. Pommerening, 'Eine einfache Synthese von Dibortetrabromid', *Chem. Ber.*, 1981, 114, 398–399.
- 102 X. Zhou, M. A. Wanous, X. Wang, D. V. Eldred and T. L. Sanders, 'Study on the Shock Sensitivity of the Hydrolysis Products of Hexachlorodisilane', *Ind. Eng. Chem. Res.*, 2018, 57, 10354–10364.
- 103 S. Isomura and K. Takeuchi, 'Preparation of hexafluorodisilane', *J. Fluorine Chem.*, 1997, **83**, 89–91.
- 104 104 M. Berger, N. Auner and M. Bolte, 'Hexabromoand hexaiododisilane: small and simple molecules showing completely different crystal structures', Acta Crystallogr. Sect. C, 2014, 70, 1088–1091.
- 105 I. Krossing, 'The Facile Preparation of Weakly Coordinating Anions: Structure and Characterisation of Silverpolyfluoroalkoxyaluminates AgAl(OR_F)₄, Calculation of the Alkoxide Ion Affinity', Chem. Eur. J., 2001, **7**, 490–502.
- Alternative syntheses of Cl₂B-SiCl₃ have been reported, but are of limited practical use due to the demanding apparatus and low yields: (a) A. G. Massey, D. S. Urch, Proc. Chem. Soc. 1964, 273-312: Cl₂B-SiCl₃ formed in trace amounts during a mercury discharge of BCl₃ vapor, likely via reaction with SiCl₄ generated from etching of a quartz discharge tube; (b) P. L. Timms, Inorg. Chem. 1968, 7, 387-389: SiCl₂, generated from Si and SiCl₄ at high temperature, was cocondensed with BCl₃ (1:1) at -196 °C, yielding a blue solid that, upon warming, released Cl₂B-SiCl₃; (c) R. W. Kirk, D. L. Smith, W. Airey, P. L. Timms, J. Chem. Soc., Dalton Trans. 1972, 13, 1392–1396: Condensation of SiCl₂ with B₂Cl₄ at – 196 °C, followed by warming under reduced pressure, produced a complex, unstable mixture from which only Cl₂B-SiCl₃ could be isolated and identified; (d) M. Zeldin, D. Solan, B. Dickman, J. Inorg. Nucl. Chem. 1975, 37, 25-28: Using a SiCl₄/BCl₃ gas mixture under electric discharge, Cl₂B-SiCl₃ was prepared and isolated in low yield (≈ 0.2%) by fractional condensation and distillation.
- Deposition Numbers 2470869 (for **2**·IDipp), 2470870 (for **2**·PPh₃ (α-)), 2470871 (for **2**·PPh₃ (β-)), 2470872 (for **2**·Py), 2470873 (for **2**·SMe₂ (α-)), 2470874 (for **2**·SMe₂ (β-)), 2470875 (for **3**·IDipp), 2470876 (for **3**·PPh₃), 2470877 (for **3**·Py), 2470878 (for **3**·SMe₂), 2470879 (for **4**), 2470880 (for **5**·SMe₂), 2470881 (for **5**·Py), 2470882 (for **7** (α-)), 2470883 (for **7** (β-)), 2470884 (for **8**), 2470885 (for [Et₄N][Cl₃B–SiCl₃]), 2470886 (for

ARTICLE Journal Name

- $[Et_4N][(I_{2.03}/CI_{0.97})B-SiI_3])$, 2470887 (for $BI_3 \cdot IDipp$), 2470888 (for BI₃•PPh₃), and 2470889 (for Me₂S•I₂B-C₂H₄-I) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe <u>Access Structures</u> service.
- H. Nöth and B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, Springer, Berlin, 1978.
- Replacement of oDFB with CH2Cl2 led to I/Cl exchange, giving rise to CD₂ICl, CD₂I₂, and 1,1-dichloro-3,4-dimethyl-1-silacyclopent-3-ene (GC-MS: Figure S1), along with IDipp·BCl₃ (¹¹B NMR spectroscopy; Figure S62).
- 2.SMe2 is dimorphic. To confirm the phase purity of a freshly prepared sample of 2.SMe2, measured powder diffraction data must be compared with simulated patterns of both polymorphs.
- The B-Do bonds within each 2.Do/3.Do pair featuring the same ligand tend to be slightly shorter in 2.Do, e.g., 2.SMe2 $(B-S = 1.927[2] \text{ Å})^{(a)} \text{ vs. } \mathbf{3} \cdot \text{SMe}_2 \text{ } (B-S = 1.959(2) \text{ Å}).$ Pyramidalization at boron was assessed by comparing the sum of the three bond angles in each SiBX2 fragment to that of three equivalent angles in an ideal tetrahedron ($\Sigma = 328.5^{\circ}$). Almost all B sites in 2.Do/3.Do show equal or even greater pyramidalization [exceptions: β -2·SMe₂ (Σ = 330.3(6)°) and **3·**SMe₂ (Σ = 333.1(4)°)]. Adducts **2·**Do are generally more pyramidalized than 3.Do, with the strongest donor IDipp producing the most pronounced effect: 2-IDipp (Σ = 308.6(5)°), **3**·IDipp ($\Sigma = 315.1[4]^{\circ}$)(b). (a) The average value with standard deviations in square brackets was calculated from the following individual bond lengths: B-S = 1.925(6), 1.927(6) (α -polymorph; two crystallographically unique molecules); 1.930(5) Å (β-polymorph); (b) The average value with standard deviations in square brackets was calculated from the bond angles of three crystallographically unique molecules: $\Sigma = 314.75(54)$, 314.95(54), 315.65(53)°.
- The Si(2)-I bond involving a bridging I atom is clearly longer (2.611(4) Å) than the terminal Si(2)-I bonds (2.428(4)/2.403(4) Å).
- R. Oshimizu, N. Ando and S. Yamaguchi, 'Olefin-Borane Interactions in Donor– π –Acceptor Fluorophores that Undergo Frustrated-Lewis-Pair-Type Reactions', Angew. Chem. Int. Ed., 2022, 61, e202209394.
- The presence or absence of SMe₂ in the reaction mixture does not appear to be decisive in this context, as the product obtained under SMe₂-free conditions has the same NMR signature after addition of the ligand as the compound formed in the long-term reaction between 2.5Me2 and cyclohexene (see the SI for more details).
- Alternative synthesis routes to 1,1-diboryl- and 1-boryl-1silylalkanes do exist and the particular synthetic value of such compounds has been emphasized. Selected examples: (a) H. Li, X. Shangguan, Z. Zhang, S. Huang, Y. Zhang, J. Wang, Org. Lett. 2014, 16, 448-451; (b) A. Millán, P. D. Grigol Martinez, V. K. Aggarwal, Chem. Eur. J. 2018, 24, 730-735.
- J. Guo, M. Yan and D. W. Stephan, 'Frustrated Lewis pair chemistry of alkynes', Organic Chemistry Frontiers, 2024, 11, 2375-2396.
- M. A. Dureen, C. C. Brown and D. W. Stephan, 'Deprotonation and Addition Reactions of Frustrated Lewis Pairs with Alkynes', Organometallics, 2010, 29, 6594-6607.
- C. A. Tanur and D. W. Stephan, 'The Thioether-Methyleneborane (PhSCH₂B(C₆F₅)₂)₂: Synthesis and Reactivity with Donors and Alkynes', Organometallics, 2011, 30, 3652-3657.
- A. Fukazawa, E. Yamaguchi, E. Ito, H. Yamada, J. Wang, S. Irle and S. Yamaguchi, 'Zwitterionic Ladder Stilbenes with Phosphonium and Borate Bridges: Intramolecular Cascade

- Cyclization and Structure-Photophysical Relationship', Organometallics, 2011, 30 3870 3879 C06234A
- C. Eller, G. Kehr, C. G. Daniliuc, R. Fröhlich and G. Erker, 'Facile 1,1-Carboboration Reactions of Acetylenic Thioethers', Organometallics, 2013, 32, 384-386.
- D. J. Faizi, A. J. Davis, F. B. Meany and S. A. Blum, 'Catalyst-Free Formal Thioboration to Synthesize Borylated Benzothiophenes and Dihydrothiophenes', Angew. Chem. Int. Ed., 2016, 55, 14286-14290.
- A. J. Warner, A. Churn, J. S. McGough and M. J. Ingleson, 'BCl3-Induced Annulative Oxo- and Thioboration for the C3-Borylated of Benzofurans Benzothiophenes', Angew. Chem. Int. Ed., 2017, 354-358.
- K. B. Wiberg, J. D. Hammer, H. Castejon, W. F. Bailey, E. L. DeLeon and R. M. Jarret, 'Conformational Studies in the Cyclohexane Series. 1. Experimental and Computational Investigation of Methyl, Ethyl, Isopropyl, and tert-Butylcyclohexanes', J. Org. Chem., 1999, 64, 2085–2095.
- H. M. Pickett and H. L. Strauss, 'Conformational Structure, Energy, and Inversion Rates of Cyclohexane and Some Related Oxanes', J. Am. Chem. Soc., 1970, 92, 7281-7290.
- J. B. Lambert, Y. Zhao, R. W. Emblidge, L. A. Salvador, X. Liu, J. H. So and E. C. Chelius, 'The θ Effect of Silicon and Related Manifestations of σ Conjugation', Acc. Chem. Res., 1999. 32. 183-190.
- We have confirmed that the model reactant BI₃·SMe₂ is competent in the iodoboration of ethylene (see the Supporting Information for details).
- Compared to the computed C=C double-bond lengths of ethylene and cyclohexene, the corresponding distances in the olefin complexes are considerably elongated: (i) 1.332 [C₂H₄] vs 1.380 Å [$2 \cdot (C_2H_4)$]; (ii) 1.340 [C_6H_{10}] vs 1.392 Å [$2 \cdot (C_6H_{10})$].
- J. P. Foster and F. Weinhold, 'Natural Hybrid Orbitals', J. Am. Chem. Soc., 1980, 102, 7211-7218.
- The second-order perturbation energy E(2) in Natural Bond Orbital (NBO) analysis quantifies the stabilization arising from donor-acceptor interactions between occupied (donor) and unoccupied (acceptor) NBOs. It reflects the energetic benefit of intramolecular electron delocalization but must not be interpreted as a bond dissociation energy or a direct measure of intrinsic bond strength. Rather, E(2) serves as a qualitative indicator of hyperconjugative interactions and other delocalization effects within the electronic structure. Although E(2) values are conventionally reported as positive, we present them as negative throughout the text and figures to emphasize their stabilizing effect.
- G. Knizia, 'Intrinsic Atomic Orbitals: An Unbiased Bridge Between Quantum Theory and Chemical Concepts', J. Chem. Theory Comput., 2013, 9, 4834-4843.
- This assumption is supported, inter alia, by quantumchemical calculation showing that the cyclohexene in the hypothetical complex $3 \cdot (C_6H_{10})$, with iodine atoms replaced by smaller chlorine atoms, primarily coordinates via symmetric π -donation—as observed in **2**·(C₂H₄); more details are provided in the Supporting Information.
- H. Cohn, E. D. Hughes, M. H. Jones and M. G. Peeling, 'Effects of Alkyl Groups in Electrophilic Additions and Substitutions', Nature, 1952, 169, 291.
- I. Fernández and G. Frenking, 'Hyperconjugative Stabilization in Alkyl Carbocations: Direct Estimate of the eta-Effect of Group-14 Elements', J. Phys. Chem. A, 2007, 111, 8028-8035.
- M. C. Elliott, C. E. Hughes, P. J. Knowles and B. D. Ward, 'Alkyl groups in organic molecules are NOT inductively electron-releasing', Org. Biomol. Chem., 2024, 23, 352-359.
- The only other example reported to date, which requires a unique type of silylborane, is described in ref[94].

emical Science Accepted Manu

Shemical Science Accepted Manuscript

ARTICLE

Journal Name

View Article Online DOI: 10.1039/D5SC06234A

- 136 Evonik Industries, Bau einer Spezialchemie-Anlage für Elektronikchips gestartet. https://publications.evonik.com/de/presse/pressemitteilung en/corporate/bau-einer-spezialchemie-anlage-fuerelektronikchips-gestartet-105329.html.
- O. Byl, E. Jones, J. Sweeney and R. Kaim, 'Properties of Diboron Tetrafluoride (B_2F_4), a New Gas for Boron Ion Implantation', AIP Conf. Proc., 2011, 1321, 408-410.
- Y. Tang, O. Byl, A. Avila, J. Sweeney, R. Ray, J. Koo, M.-S. Jeon, T. Miller, S. Krause, W. Skinner and J. Mullin, 'Highefficiency, high-productivity boron doping implantation by diboron tetrafluoride (B₂F₄) gas on Applied Materials solar ion implanter', 20th International Conference on Ion Implantation Technology (IIT), DOI:10.1109/IIT.2014.6939984.

The data supporting this article have been included as part of the Supplementary Information