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A data-driven approach to the generalization of
free radical polymerization kinetic models via
automated flow chemistry
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Systematic kinetic screening of chain transfer radical polymerizations was carried out using a continuous

flow-based automated synthesis platform tailored for high-throughput screening of polymer reactions. The

system features real-time online monitoring of monomer conversion and molecular weight distributions of

residual polymers, enabling the generation of consistent, machine-readable kinetic datasets while

minimizing user bias and experimental variability. A consistent dataset was obtained for the

homopolymerization of butyl acrylate (BA), vinyl acetate (VAc) and methyl methacrylate (MMA) mediated by

1-dodecanethiol as the chain transfer agent, across a temperature range of 70 °C to 100 °C. A highly

consistent dataset was obtained, allowing the determination of the respective chain transfer constants for

each monomer at each temperature. On the test case of vinyl acetate polymerization, a generalized kinetic

model for the rate of polymerization in the given parameter space was created via fitting of the individual

overall kinetic coefficients for the rate of polymerization, obtained from 1st order kinetic data analysis.

Bayesian optimization was then applied to predict which experimental conditions have the best potential

to gradually improve the kinetic model, and interactive model improvement is demonstrated. This provides

an important stepping stone for the development of self-driving labs that use databases to autonomously

pick future experiments to carry out in order to improve their own data basis.

Introduction

The introduction of flow chemistry to chemistry labs,
especially in the field of polymer chemistry, was for a long
time seen as a mere engineering development.1 Over the
years, and with increasing success in the implementations of
flow synthesis, the true potential of the methodology has
been revealed2 and many examples have been given where
flow chemistry does not only offer an alternative route to
chemical synthesis, but in which flow chemistry itself enables
otherwise inaccessible chemistries.3,4 In polymer synthesis,
flow applications have opened access avenues to highly
precise materials on scale.5 Via telescoping, flow can give
access to complex polymers at ease that in classical
procedures would be very difficult to make.6 Next to this, flow
polymerization has significantly improved the reproducibility
of polymer synthesis with impressive results for many
different types of polymerizations.6 As a further advantage,
flow reactors, at least when surface to volume ratios are kept
sufficiently high, are very close to ideal reactors.
Consequently, flow reactors are by now an established

technology found in many modern chemical synthesis
laboratories.

Yet, recent years have brought a further revolution that
elevates the field of flow chemistry to an even higher level.
The ability to switch from manual control to automated
operation in conjunction with online monitoring and other
feedback systems has allowed for digitalization of flow
synthesis and for the ability to perform smart self-
optimization routines on reactions,7 establishing flow
chemistry as a high-throughput experimentation
methodology.8–13 In this context, also closed-loop self-
optimizations have rapidly been realized, including multi-
objective optimizations.14 In polymer chemistry, algorithms
have been developed that dynamically adjust flow processes
to achieve a target molecular weights or precise monomer
conversions—key factors in meaningful targeting of
polymers.10,15–17 This development frees significant time for
researchers, allowing them to screen and improve reactions
much faster than ever before. With this advantage in digital
synthetic chemistry comes, however, also the need for better
operation software, and more integrated algorithms that
allow for swift decision making depending on circumstances,
a task that is far from trivial.

Even with dedicated reaction optimization techniques like
design of experiments (DoE) or Bayesian optimization,18
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optimizing reactions can still be time-consuming and
inefficient due to the vast number of possible combinations
that must be tested.19,20 Further inefficiencies stem from the
fact that most self-driving lab applications in the area work
in isolation, and typically ‘forget’ the results of an
optimization run once the objective(s) are achieved.21,22 This
challenge can be mitigated by integrating automation with
machine-learning-based reaction optimization algorithms
and with databases that store previously obtained data,
making it available for future runs.23,24 Yet, data does not
only need to be generated and stored, it also needs to be
automatically analyzed and curated in order to allow for good
algorithm-based decision making. Further, once one moves
from single optimizations to more generalized learning, more
stringent data treatment becomes necessary, ranging from
consistency checks to data aggregation.25 The limit from
which human comprehension still allows for rational
decision making is reached quite quickly, and hence
operations that to date are still often left to human operators,
such as outlier detection, need to be generalized as well. Even
if reactions are fully automated, errors can still occur, and
machines need to be able to make distinctions between a
good and a bad experimental result.26 Building databases
and introducing advanced machine learning that can harvest
the benefit of vast (and partially scattered) data is an
enormous task. In here, we demonstrate a stepping stone
towards this goal. We show how the jump can be made from
systematic screening of individual reactions to automated
decision making towards continuous iterative model
improvement. In this sense, decision making does not only
refer to error detection, but primarily to the suggestion of
new experiments to be performed with the aim of improving
the overall machine learning model describing the reaction
in question. The purpose here is not to optimize a specific
synthesis outcome (a task that has been numerously
demonstrated by now), but rather to generate comprehensive
datasets that can ultimately provide a complete description
of a particular reaction, and hence will allow to choose
optimal conditions for any desired outcome instantly. To
reach this aim, we make use of the automatic screening
platform that we had previously described to screen

controlled radical polymerization reactions.9 In this previous
work, we had demonstrated how automated screening
removes the dependency of results from the human operator,
and how consistent datasets can be created using such
‘polymer synthesizer’. This is important as only if data is
operator independent and virtually bias-free, generalizable
results are obtainable. Further, in our previous work we
demonstrated that the machine as used in here generates
highly reproducible data which are very good agreement with
offline analysis, hence validating the method. In here, we
take the next step in using this device as a generic data
generation machine that will itself propose the next
experiment required to be carried out in order to improve a
generalized kinetic model. Fig. 1 gives an overview over the
approach that is taken. Based on a set of user-defined input
variables data is obtained in high-throughput. The outcome
of screenings is analyzed to provide a joint fit of all data.
Optimization algorithms are then used to identify new
reactions that will improve the joint fit, and the suggested
experiments are conducted to improve the overall generalized
model.

While we worked before on controlled radical
polymerization, or more specifically, reversible-addition
fragmentation chain-transfer (RAFT) polymerization, in this
work, we took a step back to the simpler thiol-mediated
chain transfer polymerization (CTP) (see Fig. 1c). CTP does
not belong to the so-called reversible deactivation radical
polymerizations, and does not allow for so-called livingness
of chain growth. Yet, CTP still provides swift molar mass
control of the resulting polymers (an essential characteristic
to run flow polymerizations without the need for constant
viscosity adjustment).27 Most importantly though, CTP is in
good approximation identical in kinetics to an uncontrolled
free-radical polymerization (FRP),28 and can hence serve as a
model system to understand FRP kinetics, which is still the
most abundant method used in industry to produce polymer
products. Thus, by studying CTP in a broad range of thiol
concentrations (which allows to extrapolate to zero thiol
concentration) will later be able to predict free radical
polymerizations to some extent as well. This in turn will
allow to gain detailed insights in monomer reactivities and

Fig. 1 Real-time monitoring plots from automatic screening of butyl acrylate at a cT/cM ratio 0.04 with 1-dodecanthiol at 80 °C. (a) Real-time
monomer conversion against residence time; (b) first-order plot for the same data and (c) an example for a molar mass distribution obtained
during the reaction.
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the kinetics of the complex sub-reactions of the chain growth
process.

Experimental
Materials

Butyl acrylate (BA, 99%, Merck), methyl methacrylate (MMA,
99%, Merck) and vinyl acetate (VAc, 99%, Merck) were
deinhibited with a column of activated alumina before using.
Azobis-isobutyronitrile (AIBN, 12 wt% in acetone, Sigma-
Aldrich) was dried using a rotavap to remove acetone and
recrystallized twice from methanol before use.
1-Dodecanthiol (98% Merck) and butyl acetate (BuOAc, 99%
Merck) were used as received. HPLC-grade tetrahydrofuran
(THF) was purchased from Thermo Scientific, and filtered
before use for size exclusion chromatography.

Characterization

Inline NMR reaction monitoring was carried out with a low
field benchtop 60 MHz NMR (Magritek, Spinsolve 1.19.0) via
recording 1H spectra (acquisition bandwidth 5 kHz: 83 ppm;
acquisition time: 6.554 seconds; repletion time: 17 seconds).
For data acquisition, the reaction monitor protocol was used,
and a power shim was performed at the start and end of the
day. Online SEC was performed on a custom-designed PSS
system, operated by PSS WinGPC software. The SEC was
equipped with a PSS SDV analytic column (50 × 8 mm),
followed by one PSS SDV analytic 3.0 μm particle with
porosity of 1000 Å (300 × 8 mm). The sample was analyzed
via an evaporative light scattering detector (ELSD) ELS1300
using THF as eluent at 40 °C with a flow rate of 1 mL min−1.
The SEC system was calibrated with linear narrow polystyrene
standards ranging from 474 to 7.5 × 106 g mol−1 (K = 1.41 ×
10−4 dL g−1 and α = 0.70).

General procedure of polymerization reaction screening

The high-throughput automated reaction screening platform
was built by the Polymer Reaction Design group in a previous
work.9 A brief description of the platform is also provided in
the supporting information of this contribution. In a typical
procedure, the monomer (BA, MMA or VAc), chain transfer
agent (1-dodecanthiol), initiator (AIBN) and solvent (BuOAc)
were added to a 10 mL volumetric flask, then transferred to a
glass vial and degassed with nitrogen for 5 minutes before
use. Next, the reaction solution was transferred to a 10 mL
gastight syringe (Trajan), purged with nitrogen at least three
times, and placed in the holder of the syringe pump. The
flow reactor was manually flushed with the solvent used in
the reaction before each new reaction. After connecting the
syringe to the flow reactor, the pump was started to make
sure the block of the syringe pump was closed against the
plunger of the syringe. Once the reaction solution was
coming out from the syringe and moving in the tube, the
pump was stopped manually, and the experiment was

initiated via the automated platform's software. The recipes
for all polymerization reactions are given in Tables S1–S9.

Results and discussion
Reaction screening

The general approach of this work is summarized in
Scheme 1. The chain transfer polymerizations and monomers
studied herein are given in Scheme 1c and d. 1b gives details
of the experimental setup that we have used (unaltered from
our previous work) and 1a outlines the automatic decision
pathway taken by the algorithmic control of our polymer
synthesizer. The polymer synthesizer as shown in Scheme 1b
allows to carry out flow polymerizations. Computers take care
of the entire reaction monitoring and based on preset time
intervals, a so-called timesweep series experiment is
performed.29 In such experiment, the flow rate of the reaction
is changed abruptly in different intervals, allowing for a very
fast screening of the reaction with high time resolution. NMR
and size exclusion chromatography (SEC) is used as online
monitors, allowing to detect monomer conversion (the rate of
polymerization) and the cumulative molecular weight
obtained in the reaction at the same time. NMR in this case
allows typically for second-scale time resolution while SEC
gives results on the timescale of a few minutes. Since
typically 2–3 timesweeps are consecutively carried out, a
consistency check is built in the procedure, since only
experiments in which the data from different sweeps match
each other can be regarded as true results.

NMR spectra are measured directly on the reaction
mixture, hence very broad spectra are obtained. Yet, integrals
of peaks are still reliable and allow for a good determination
of the reaction progress. An illustration of a representative
spectrum from butyl acrylate polymerization is given in Fig.
S1. Simultaneously, molecular weight parameters including
number average molecular weight (Mn), weight average
molecular weight (Mw), and dispersity (Đ) are obtained from
SEC. A typical result from the timesweep experiments is
shown in Fig. 1. These polymerization reactions can be
considered as pseudo-first-order as confirmed from the first
order plot in Fig. 1b (available for all 45 reactions in a data
repository: https://doi.org/10.26180/29208134). CTPs typically
yield polymers with a dispersity of around 2.30,31 In our work,
we often observed somewhat smaller dispersities in the range
of 1.2–1.7, which can be explained by the use of an ELSD
detector, which removes small oligomers. Consequently,
especially for low molecular weight polymers, significant
parts of the distribution are hence not considered, resulting
in the lower apparent dispersity. As can be seen,
polymerizations proceed in a controlled fashion with
predictable increases in conversion as a function of residence
time. This consistency is indicative of a well-behaved radical
polymerization, supporting the reliability of CTP in
continuous flow polymerizations.

Data from individual screenings are systematically stored
in a designated folder as .csv files, updating every 18 seconds
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throughout the experiments. This real-time monitoring
approach enables the operator to promptly assess reactions
and make corrective interventions before completion,
averting potential failures. For the present work, we opted to
screen CTPs involving three distinct monomers at
temperatures ranging from 70 °C to 100 °C, in order to
obtain a dataset with a broad scope. In a single reaction

screening spanning 1 to 10 minutes of residence time, over
250 NMR spectra and 7 SEC chromatograms were acquired
within 1.25 hours (including the dead volume). Extrapolating
this to 50 different reaction conditions results in an
estimated 12 500 NMR spectra and 350 SEC chromatograms.
Despite the robust design of the platform and the reaction
screening methodology, the collection of flawless data is not

Scheme 1 (a) An overview of the structure of the data collecting, analysing and visualization; (b) high throughput automated reaction screening
platform with inline analysis used; (c) chain transfer polymerizations screened in this work for monomer butyl acrylate and methyl methacrylate.
(d) Chain transfer polymerizations screened in this work for monomer vinyl acetate.
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guaranteed. Before utilizing this substantial dataset for any
kinetic study, it is thus imperative to validate the reliability
of the data. Two primary types of deviations in NMR data can
be observed on occasion, namely discrepancies between
timesweeps (conversion jumping) or formal calculation of
negative conversions, both stemming from the initiation of
faulty experiments, brief software or hardware malfunctions
or wrong choice of integration limits for the NMR spectra.
NMR integrations can be adjusted if negative conversions are
obtained, and hence our focus for error detection was
primarily on addressing the issues related to the so-called
timesweep jumps.

Fig. 2 illustrates such an instance of a jump. The jump
can be observed between the first and second timesweep at 3
minutes residence time. In this case, a larger jump (more
than 5% conversion) was observed between the two
timesweeps, the first timesweep (1–3 minutes) was
disregarded and the data from the second timesweep (3–10
minutes) was regarded as true data. Close inspection of
Fig. 1a reveals also such a jump, yet at a rather insignificant
level, and the joint constructed first order plot is nicely
linear. For the data in Fig. 2 this would not be the case.
These jumps originate from too high flow rates that hinder a
proper evaluation of NMR intensities; if the flow rate is too
high then magnetized material will leave the NMR detection
volume before all spins have relaxed. In such case, the
measured overall intensities can be wrong and hence
conversion determination fails (as monomer and polymer
have different relaxation times). Timesweeps covering a later
time window will be less likely to suffer from such an effect,
and can hence be assumed to be true.

Data-visualization

Controlling the molecular weight of polymers is crucial due
to the profound impact on their physical and mechanical
properties, tied to the length of polymer chains.32,33 In the
realm of FRP, chain transfer agents (CTA) are versatile tools
to achieve chain length regulation in a simple and

straightforward fashion while using cheap and available
chemicals. The chain transfer constant, Ct, serves as a
quantitative measure of a CTA's reactivity, defined as the
ratio of the chain transfer to the propagation rate
coefficient.34 Notably, a higher Ct signifies a reduced need
for a given concentration of the chain transfer agent to
achieve specific molecular weight control.34

Expressed by the so-called Mayo equation, the
instantaneous degree of polymerization (DP) exhibits a linear
correlation with the ratio of CTA concentration (cT) to
monomer concentration (cM), where Ct serves as the slope.35

The Mayo eqn (1) allows for the simple prediction of expected
molar masses in a chain transfer polymerization, and at the
same time also offers an easy handle to determine the chain
transfer constant.

1
DPn

¼ Ct
CTA½ �
M½ � þ 1þ α

DPn;0
(1)

In eqn (1), DPn,0 is the degree of polymerization in the
absence of chain transfer agent (CTA), and α is the fraction
of termination by disproportionation.

The Mayo equation yields the instantaneous DPn at any
given point in a polymerization, and is hence only strictly
applicable at low monomer conversion.36 As conversion
increases, factors like rising viscosity, the gel (Trommsdorff)
effect,37 and the depletion of monomer relative to CTA
concentration cause deviations from these assumptions and
the accumulative obtained molar mass may slightly differ
from the one at low conversion. These complexities make the
Mayo equation less accurate at higher conversions, where the
reaction kinetics become less predictable due to diffusion
limitations38 and increased viscosities.37

In here, we used the Mayo equation to test our data and
in order to obtain chain transfer constants for the systems
under investigation. For this matter, from all performed
polymerization runs, the Mn of the lowest screened monomer
conversion was selected and subjected to analysis following
eqn (1). A reference Mayo plot for butyl acrylate and

Fig. 2 Jump between timesweeps in vinyl acetate conversion
screening at a cT/cM ratio of 0.15 with 1-dodecanthiol at 100 °C.

Fig. 3 Best fit of data to eqn (1) for 1-dodecanthiol-mediated
polymerization of BA at 80 °C.
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1-dodecanethiol at 80 °C is presented in Fig. 3, with the
corresponding data summarized in Table 1. With increasing
CTA concentrations relative to the monomer concentration,
lower Mn and hence larger 1/DPn are observed, following the
linear relationship as predicted in eqn (1), with the slope of
the best fit of the data yielding Ct. The corresponding plots
and fits for all other polymerization are compiled and are
available for reference in the supporting information (Fig.
S2–S10). In the shown case here, Ct equals 0.682, a value
largely in line with literature.39 de la Fuente and López-
Madruga (2001) reported Ct ≈ 1.51–1.62 at 40–60 °C using
Mayo and CLD methods. These values are substantially
higher, yet these differences can stem from differences in
solvent (benzene) and the overall or methodology used (batch
vs. flow).

A summary of results is given in Table 2 for
1-dodecanthiol across various monomers at different
temperatures. Notably, a generally increasing Ct is observed
for higher temperatures, demonstrating that chain transfer is
associated with a higher activation energy compared to the
propagation rate coefficient, even if the screened temperature
range is not sufficient to determine this activation energy gap
accurately.40 The increasing trend with temperature aligns
with expectations, as the literature suggests that chain
transfer constants for thiols increase with temperature due to
enhanced reactivity of the S–H bond. For BA, the chain
transfer constant increases with temperature, from 0.56 at 70
°C to 0.68 at 80 °C, and 0.77 at 90 °C. This trend suggests
that the chain transfer reaction becomes more favorable as
temperature rises. For MMA, the chain transfer constant also
increases with temperature, from 0.56 at 80 °C to 0.63 at 90
°C, but remains constant at 0.63 from 90 °C to 100 °C. This

plateau could indicate a balance between the activation
energy of the chain transfer reaction and the propagation
reaction, where further temperature increases do not
significantly alter the ratio of their rate constants. The
literature reports Ct ∼ 0.66 for n-dodecanethiol with MMA at
60 °C,41 only slightly higher than our 80–100 °C values of
∼0.56–0.63. The discrepancy may arise from differences in
experimental conditions (e.g., solvent, initiator concentration)
or measurement techniques (Mayo method vs. CLD) and can
be considered a good match within error margins. Another
source reports Ct values for MMA with n-dodecanethiol in the
range of 0.5–0.7 at 60–70 °C, which aligns closely with the
obtained values.42 The values are also consistent with general
trends for acrylates, where chain transfer constants with
thiols are typically in the range of 0.5–1.0, depending on
temperature and solvent conditions.

For VAc, the comparison of the obtained apparent chain
transfer with literature is less straight forward. Bon and
coworkers pointed out that for monomer that are associated
with transfer constants considerably larger than 1, erroneous
results can be obtained using the Mayo equation.43 In fact,
the Mayo equation would underestimate the Ct in such case.
Thus, the reported values for VAc in Table 2 should be taken
with caution. However, the change in the apparent constant
from 0.47 at 85 °C to 0.69 at 90 °C, and 0.71 at 100 °C shows
nonetheless a significant shift in reactivity with temperature.

Regardless, the high quality of the linear relationships
identified in the Mayo plots underpins the generally high
quality and coherence of the dataset produced, which is more
important than the actual chain transfer constants that have
been determined in this high-throughput fashion. It should
be noted that the Ct determination as such was not the aim
of this study, and we only conducted the analysis since the
data was available, and in order to test if linear plots are
obtained. Monomers such as VAc would require further study
to obtain more detailed and robust transfer constants.

Self-optimization

While the molar mass of a polymer made from chain transfer
polymerization is well predictable as shown above, the rate of
polymerization is not, and requires extensive kinetic study
and modelling to make predictions. Theoretically, the overall
reaction rate of free radical polymerization is determined by
the initiation, propagation and termination rate. Chain
transfer can also play a role, but is often assumed to be of
minor influence with regard to the actual rate of
polymerization. While initiation and propagation are
relatively well understood in literature today, the diffusion-
controlled nature of termination makes this reaction very
complex and very difficult to predict, also because it can
change over orders of magnitude during a reaction itself. As
noted, a comprehensive description of the overall rate of
polymerization requires detailed knowledge of each
individual reaction step. Nevertheless, even with the best
available data, accurately predicting the rate of a simple FRP

Table 1 Number average molecular weight obtained from dodecanthiol-
mediated BA polymerization at 80 °C at various cT/cM ratios

cT/cM Mn/g mol−1 DP

0.025 4400 34
0.040 3200 25
0.060 2400 19
0.100 1700 13
0.135 1200 9

Table 2 Chain transfer constants of 1-dodecanthiol for three monomers
at different temperatures obtained in this work

Chain transfer
agent Monomer Temperature/°C

Chain transfer
constant

1-Dodecanthiol BA 70 0.56
80 0.68
90 0.77

MMA 80 0.56
90 0.63

100 0.63
VAc 85 0.47

90 0.69
100 0.71
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Fig. 4 3D Polynomial relationship between temperature (°C), rate (s−1) and chain transfer agent to monomer concentration ratio (cT/cM) for vinyl
acetate monomer and 1-dodecanthiol chain transfer agent. The current R2 for each fitting depicts the R2 at which the fitting is currently standing
before making a suggestion. And predicted new R2 means the expected R2 if the suggested point is fully achieved. The suggested point is written
in red ink and shows the new suggested data pair of cT/cM and T, and the expected/theoretical rate constant (k).
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remains highly challenging. In practice, it is often more
straightforward to determine the polymerization rate
empirically. As shown in Fig. 1, FRPs typically show first-
order kinetics in monomer concentration, since initiation
and termination are in steady-state during polymerization.
(REF) Thus, the overall rate is easily determined from
timesweep data via the following equation:

ln
Mt

M0

� �
¼ kt (2)

In eqn (2), Mt is the concentration of monomer at residence
time t, M0 is the initial concentration of monomer and k is
the overall reaction rate coefficient of free radical
polymerization. Determining k for each reaction reduces the
kinetic information for each polymerization to a single
numerical value, giving access to a simplified data-driven
exploration of the experimental parameter space. k is
naturally a function of all individual rate coefficients as well
as environmental factors. Human comprehension is limited
when analyzing this complex function, yet machine-learning
algorithms can statistically analyze the interdependencies,
allowing to build empirical models that can then predict new
reaction outcomes. To demonstrate this, we focused on the
following vinyl acetate polymerization mediated by
1-dodecanthiol. Initially, 11 distinct experiments were
conducted, with the detailed formulations for each reaction
solution provided in Tables S7–S9. Subsequently, the data
was treated as shown above, and k was determined for each
polymerization, spanning a 3-dimensional parameter space
(for concentrations and temperature, respectively, the set
variable conditions of the polymerization. Fig. 4 shows how
these parameter spaces look like. To generalize the parameter
space, a customized polynomial fitting (third-order with
respect to temperature as an approximation to its exponential
relation with the rate of reaction and first-order with respect
to cT/cM with an approximation of linear relation between
concentration and rate of reaction for the first order kinetics)
was performed.

The ensuing three-dimensional surface plot and fitting
equation unsurprisingly illustrate the substantial impact of
temperature on the reaction rate. What is more interesting is
the relationship between the CTA concentration and the
overall rate. While the radical transfer to the CTA is typically
seen as fast and not rate determining, the obtained data
reveals that the reaction rate of FRP is indeed distinctly
influenced by the CTA concentration. This unexpected
observation underscores the nuanced dynamics at play in the
polymerization process, and also shows the level of detail
that the empirical model can catch without trying to
elucidate the underpinning individual rate coefficients.

In principle, the joint fit of the data provides a generalized
model that is able to interpolate in the given parameter space
for predictions of rate of polymerizations. However, given the
relatively limited exploration of only 11 random experiments,
there exists substantial potential for further refinement of
the models. Indeed, using the original 3D surface fit in the

upper left corner of Fig. 4, the R2 value of the fit is 0.842,
which indicates a good fit, but yet also indicates that the
model can still be improved. Of course, one could from here
choose further random experimental conditions to add to the
dataset, which will certainly improve the goodness of the fit
and thus the model. However, given the vast chemical
parameter space, traditional statistical methods may prove
insufficient for such optimization. Hence, a more efficient
approach is warranted.

Thus, Bayesian optimization, a machine learning-driven
self-optimizing algorithm, was employed to identify the most
favorable parameter space for achieving the target outcomes
and desired conditions.44 Bayesian optimization constructs a
probabilistic surrogate model, typically a Gaussian process,
based on the given dataset and its polynomial fit. This
surrogate model predicts the objective function across the
parameter space while quantifying uncertainty in those
predictions. Weaknesses in the fit—regions where the model
is inaccurate or uncertain—are identified by analyzing areas
with high predictive variance or significant deviations
between the surrogate's predictions and observed data. BO
employs an acquisition function, such as expected
improvement or probability of improvement, to evaluate
potential new data points. This function balances exploration
(sampling uncertain regions) and exploitation (sampling
regions likely to yield better outcomes), prioritizing points
that are most likely to reduce uncertainty and improve the
fit's accuracy. In our system, it was specifically adapted to
seek the best trade-off among competing objectives, namely
CTA concentration and temperature, employing the
polynomial fitting equation to guide the selection of optimal
experimental conditions. Leveraging the customized
polynomial fitting equation and a generated predicted
surrogate function, the algorithm identifies weaknesses in
the given fit and suggests data points that are most likely to
improve the overall fit. Thus, by iteratively suggesting new
experiments, the polynomial fit of the dataset can be
improved continuously, efficiently navigating the complex
chemical parameter space and optimizing the experimental
design for enhanced model performance. Fig. 4 shows the
successive suggestion of new experiments to be carried out,
and how they gradually improve the overal model.

Four strategically-suggested experiments were conducted
for the FRP of vinyl acetate with 1-dodecanthiol, with the
details of the reaction solutions provided in Tables S7–S9. As
already mentioned, the initial dataset yielded an R2 of 0.842.
The Bayesian optimization algorithm suggested the first data
point at cT/cM of 0.01 at 100 °C, suggesting that knowledge of
this experimental outcome could potentially improve the R2

for the fitting to 0.91. The predicted k for this suggested data
point is 0.00086 s−1. When the suggested experiment was
conducted, this value was confirmed to be 0.00081 s−1, hence
while being roughly correct, slightly off from the prediction,
nonetheless, this added datapoint increased the actual R2 to
0.901, and hence also close to what the Bayesian
optimization algorithm predicted. However, such
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improvement is not always the case, and it can be seen with
the next iteration that the suggested experiment resulted in
a lower R2 value. This indicates that the previous model
was partly overfitted, and the decrease does not indicate a
less good model as such. Generally, however, the model is
expected to converge to higher R2 with increasing numbers
of iterations. Fig. 5 demonstrates this trend, showing the
progression of R2, advancing from 0.842 to just above 0.91.
We carried out a few iterations here to demonstrate the
concept, and seemingly for the given parameter space about
15 experiments have been sufficient to arrive at a relatively
good model. It must be noted that R2 will never reach unity,
as experimental errors alone will always limit the model
accuracy. The model in its most refined form successfully
predicts now the expected rate of polymerization as a
function of the cT/cM ratio and temperature T and has thus
reached good generalization, as further significant
improvements are not expected from more iterations. A
comparison of the predicted and experimental k values is
presented in Table S19. Thus, the goal was achieved to
create a reliable general model for the prediction of reaction
rates rather than optimizing the rate for a single set of
conditions.

Conclusions

Using an automated kinetic screening platform that allows
radical polymerizations to be followed with respect to
conversion and molecular weight online, a significant dataset
for chain transfer polymerizations of a series of monomers
was generated. Fitting of molecular weight data to the Mayo
equation allowed determination of the chain transfer
constants at play for 1-dodecanethiol for different monomers
and temperatures, showing the validity and good coherence
of the obtained data. Further, the overall rates of
polymerizations were investigated, and the hypothesis was
tested if a generalized model can be created for the
description of the rate of chain transfer polymerizations.
Typically, in deterministic modelling, such a generalizable

model would require intimate knowledge of number rate
coefficients that underpin the entire reaction, a task that has
not been achieved until today. Nonetheless, by using the
given dataset, joint 3-dimensional fits could be made to
describe the rate dependency on the parameter space, this
being the chain transfer to monomer concentration ratio and
the reaction temperature. It is then shown that Bayesian
optimization can be used to increase the goodness and the
predictivity of the models generated in this way iteratively.

This model lays the ground-work for self-optimizing
machines. While at present the suggested new experiments
still need to be initialized by a human operator, in future the
entire process can be automated and new experiments be
conducted without human interaction. Thus, this work
introduces the concept for continuously learning and
improving self-driving labs, showing the power that can be
unfolded when automated chemical reactors will be
connected with structural databases, allowing systems to
continuously improve over time. We envision that such
systems will likely reach higher predictivity and precision in
polymerizations than classical modelling of reactions when
the parameter space is gradually improved, and when
databases are made more widely available, feeding more data
in then continuously improves machine learning models.
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Fig. 5 R2 of kinetic profile polynomial fitting after each suggestion
given by the Bayesian optimization algorithm.
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