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15 ABSTRACT

16 Artificial intelligence (AI) is revolutionizing medicine by automating tasks like image 

17 segmentation and pattern recognition. These AI approaches support seamless integration with 

18 existing platforms, enhancing diagnostics, treatment, and patient care. While recent advancements 

19 have demonstrated AI superiority in advancing microfluidics for point of care (POC) diagnostics, 

20 a gap remains in comparative evaluations of AI algorithms in testing microfluidics. We conducted 

21 a comparative evaluation of AI models specifically for the two-class classification problem of 

22 identifying the presence or absence of bubbles in microfluidic channels under various imaging 

23 conditions. Using a model microfluidic system with a single channel loaded with 3D transparent 

24 objects (bubbles), we challenged each of the tested machine learning (ML) (n = 6) and deep 

25 learning (DL) (n = 9) models across different background settings.  Evaluation revealed that the 

26 Random Forest ML model achieved 95.52% sensitivity, 82.57% specificity, and 97% AUC, 

27 outperforming other ML algorithms. Among DL models suitable for mobile integration, 

28 DenseNet169 demonstrated superior performance, achieving 92.63% sensitivity, 92.22% 

29 specificity, and 92% AUC. Remarkably, DenseNet169 integration into a mobile POC system 

30 demonstrated exceptional accuracy (> 0.84) in testing microfluidics at under challenging imaging 

31 settings.  Our study confirms the transformative potential of AI in healthcare, emphasizing its 

32 capacity to revolutionize precision medicine through accurate and accessible diagnostics.  The 

33 integration of AI into healthcare systems holds promise for enhancing patient outcomes and 

34 streamlining healthcare delivery.
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35 INTRODUCTION

36 The convergence of artificial intelligence (AI) and healthcare has opened up a new era of 

37 possibilities, particularly in detection diagnostics and treatment. With AI algorithms continuously 

38 advancing, the integration of these approaches into healthcare systems holds immense promise for 

39 transforming traditional practices and addressing longstanding challenges in healthcare delivery.1-

40 3 Healthcare applications driven by sophisticated machine learning (ML) and deep learning (DL) 

41 algorithms stand at the forefront of modern healthcare innovation.4-6 These algorithms empower 

42 machines to obtain insights from vast datasets, predict clinical outcomes, and assist healthcare 

43 providers in making informed decisions.6 From medical imaging analysis to personalized 

44 treatment strategies, AI-driven approaches have demonstrated significant efficacy in improving 

45 diagnostic precision and ultimately enhancing patient outcomes.7-10

46 POC diagnostics represent a cornerstone of modern healthcare, offering timely and 

47 accessible testing solutions, particularly in resource-limited settings.11-13 The integration of AI into 

48 microfluidic systems presents a promising avenue for enhancing the accessibility and efficiency 

49 of POC testing.14, 15 By harnessing advanced ML and DL algorithms, AI enhances the sensitivity, 

50 specificity, and multiplexing capabilities of microfluidic devices, enabling rapid and accurate 

51 detection of a wide range of diseases and biomarkers directly at the POC.16-18 An important 

52 approach where AI is utilized to enhance microfluidic systems is in image processing. ML and DL 

53 learning models excel at image classification and pattern recognition tasks and can support 

54 microfluidic devices to perform rapid and multiplex assays, allowing for comprehensive screening 

55 or testing using minimal resources.19-21 This integration addresses critical gaps in healthcare access 

56 and empowers a new level of POC diagnostics, equipping frontline providers with actionable 

57 insights and revolutionizing the delivery of healthcare services.
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58 Recent advancements have demonstrated superior performance in identifying disease 

59 biomarkers, detecting cancer,22 viruses,23 bacteria,24 and other pathogens,25 underscoring the 

60 robustness and clinical relevance of AI-integrated microfluidic platforms in modern healthcare 

61 settings. However, despite these advancements, there remains a gap in the comparative evaluations 

62 of different AI algorithms in testing microfluidics, and the optimal approach for maximizing their 

63 performance in this context remains unclear, particularly in the POC diagnostics.26-31 In POC 

64 settings, practical constraints such as cost, power consumption, memory limitations, and 

65 computational efficiency are crucial, making the choice of algorithm highly impactful. For 

66 instance, logistic regression is relatively simple, with a complexity of O(n×m), where n is the 

67 number of samples and m the number of features. It requires moderate computational power and 

68 memory, making it a good fit for POC settings that have limited Central Processing Unit (CPU) 

69 power and memory.32  Decision trees, with complexity O(n×m×log(n)),33 and random forests, 

70 which add an additional factor for the number of trees (O(k×n×m×log(n)),34 where k is the number 

71 of trees), require moderate resources. They build tree structures that evaluate multiple features at 

72 once. While computationally more demanding than logistic regression, they can still be feasible in 

73 many POC setups, especially with fewer trees. Naive Bayes classifiers are computationally 

74 efficient due to their independence assumption for features, with complexity O(n×m). This makes 

75 them ideal in resource-limited environments. However, this simplification can sometimes reduce 

76 predictive performance if feature independence is not a valid assumption.35 On the other hand, 

77 Support Vector Machines (SVMs), especially with non-linear kernels, can have significantly 

78 higher complexities (O(n²) to O(n³)), making them less suitable for constrained environments 

79 without powerful CPUs or Graphics Processing Units (GPUs). However, using linear kernels or 

80 approximation methods (e.g., LinearSVM or Fast SVM) can reduce the computational load, 
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81 making SVMs a more viable option for POC.36 K-Nearest Neighbors (K-NN), while simple in 

82 terms of training complexity (O(n×m)), can become computationally intensive during inference 

83 due to distance calculations between all data points. Optimization techniques like KD-trees (K-

84 Dimensional trees) or Ball-trees can speed up inference, making K-NN more feasible for real-time 

85 POC applications.37 Neural networks and deep learning models (e.g., Convolutional Neural 

86 Networks (CNNs)) typically have a higher complexity of O(n×m×d), where d is the depth of the 

87 network. These models require substantial memory and processing power, particularly using 

88 GPU/TPU resources (where TPU stands for Tensor Processing Units), which are not commonly 

89 available in POC devices. However, methods like dropout, batch normalization, weight pruning, 

90 and model distillation can help reduce the computational burden, allowing for more lightweight 

91 versions of these models to be deployed on smaller devices.38 Foundation models, like large-scale 

92 AI models (e.g., Generative Pre-trained Transformers (GPT), Bidirectional Encoder 

93 Representations from Transformers (BERT)), present an even bigger challenge due to their high 

94 computational demands during both training and inference. These models often require substantial 

95 GPU clusters or high-performance computing (HPC) environments, making them impractical for 

96 resource-constrained POC settings. In such cases, pre-trained models fine-tuned for specific tasks 

97 or more compact versions of these models (e.g., TinyBERT, DistilBERT) might be used instead.39 

98 This trade-off between computational demands and resource availability emphasizes the 

99 importance of balancing model performance with resource constraints in POC settings. 

100 We employed a model microfluidic system, featuring a single microfluidic channel loaded 

101 with 3D transparent objects of bubbles. This model is designed to rigorously challenge the 

102 performance of commonly used AI models and provide insights into their effectiveness in real-

103 world diagnostic scenarios. We integrated various ML and DL algorithms into our study, including 
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104 CNNs like MobileNetV2, ResNet101V2, and DenseNet169, alongside commonly used ML 

105 models in healthcare applications such as Naive Bayes, logistic regression, KNN, SVM, and 

106 Random Forest.40-44 Among the six evaluated ML algorithms, the Random Forest model performed 

107 best, achieving 95.52% sensitivity, 82.57% specificity, and 97% AUC. Similarly, among the nine 

108 DL models, DenseNet169 stood out, achieving 92.63% sensitivity, 92.22% specificity, and 92% 

109 AUC. Such a comparative study is critical in gaining a comprehensive understanding of the 

110 strengths and weaknesses of different algorithms, informing algorithm selection, optimization, and 

111 deployment decisions across diverse domains and applications.45-48 

112

113

114 RESULTS AND DISCUSSION

115 The integration of AI in medicine is driven by its remarkable ability to analyze and classify 

116 images and datasets. This computational capability of AI algorithms is foundational across diverse 

117 domains, prominently within diagnostics and medical testing, where AI-driven image analysis 

118 stands as a transformative force, providing rapid data processing and precise assessment devoid of 

119 infrastructure constraints or specialized human oversight.3, 49, 50 This technological paradigm bears 

120 profound implications, particularly on POC diagnostics, through its role in facilitating the 

121 integration of microfluidics into POC applications.51 By harnessing sophisticated ML and DL 

122 algorithms, AI streamlines the imaging and analysis of microfluidic devices, such as smartphone-

123 captured assays, reducing the total testing cost and time, enhancing accuracy, and expanding 

124 utility.19, 52, 53 This convergence of AI and microfluidics within POC holds immense potential to 

Page 6 of 28Lab on a Chip

La
b

on
a

C
hi

p
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
L

eo
ts

he
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

02
4-

10
-0

1 
11

:1
8:

43
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D4LC00671B

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4lc00671b


7

125 democratize healthcare access, particularly in underserved regions, by providing affordable, 

126 accurate, and accessible diagnostic solutions.14, 19, 54, 55 

127 In our study, we investigated the efficacy of AI algorithms, including both ML and DL, to 

128 facilitate the process of testing microfluidics within POC settings. We employed a microfluidic 

129 system comprising a single microfluidic channel to rigorously assess a set of 15 AI models 

130 recognized for data analysis and image classification across biomedical and diagnostic domains. 

131 Our experimental setup incorporated testing configurations featuring varying densities of bubbles. 

132 Bubbles as a readout was selected to probe the imaging and analytical performance of the 

133 examined algorithms. Despite bubbles being less prevalent than conventional color-based or 

134 fluorescence-based readouts, their inherent 3D transparency poses challenges, as they may be 

135 mistaken for non-targeted constituents within the sample matrix, microfluidic system or the testing 

136 environment and background. In addition, transparent bubbles can introduce challenges such as 

137 refraction and variable light scattering, which may impact imaging accuracy and algorithm 

138 performance. By using these bubbles, we aimed to simulate complex real-world imaging 

139 conditions and evaluate how well the AI models could handle such complexities. Colorimetric 

140 readouts, though linear and would allow comparatively easier workflow, fail to sufficiently 

141 encapsulate the intricacies necessary for discerning strengths and weaknesses of the tested 

142 algorithms. Meanwhile, fluorescence, although know to support high specificity and sensitivity 

143 testing, remains impractical for widespread POC adoption due to the need for bulky equipment 

144 and specialized setup to achieve the required sensitivity and specificity in most analyses.

145 Our set of AI algorithms included ML models, such as Naive Bayes, logistic regression, k-

146 Nearest Neighbors (KNN), Support Vector Machines (SVM), and Random Forest, alongside DL 

147 CNNs such as MobileNetV2, ResNet101V2, and DenseNet169. By combining traditional ML 
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148 algorithms with state-of-the-art CNN architectures, we created a diverse ensemble of models that 

149 can collectively leverage different aspects of the data. This ensemble approach is essential to 

150 enhance robustness and generalization performance, particularly in scenarios where the dataset 

151 may be limited or the target features are challenging to discern (i.e., bubbles). The incorporation 

152 of traditional ML algorithms stemmed from their robustness in handling various types of features, 

153 including those extracted from images, and their suitability for the often constrained datasets 

154 characteristic of microfluidic diagnostics at POC settings. The CNN architectures like 

155 MobileNetV2, ResNet101V2, and DenseNet169 have unparalleled ability to capture intricate 

156 spatial relationships within images, which is crucial for discerning subtle patterns like challenging 

157 signals such as bubbles. This aligns with the evolving field of diagnostics, which is moving 

158 towards inventing and incorporating more versatile readouts like bubbles to allow for more 

159 sensitive and unique detection capabilities, distinct from common ones like color and fluorescence. 

160 These CNN architectures offer distinct trade-offs in terms of model size, computational efficiency, 

161 and classification accuracy, offering flexibility in addressing the specific nuances of the dataset.

162 To investigate the capabilities of the selected set of ML and DL algorithms in testing 

163 microfluidics, we captured 19,097 images of our microfluidic model with bubbles in various 

164 settings, including different environments, lighting conditions, times of the day, and backgrounds 

165 (Figure 1). We labeled the captured images either positive or negative, based on the number of 

166 bubbles, around a threshold value of 10 bubbles per microchip, to train our ML and DL models 

167 (Figure 1a). Out of the 19,097 labelled images (Figure 1b), 15,530 images were utilized for 

168 training using Python running on Lambda Vector GPU Workstation (Intel i9-10900x CPU, 

169 NVIDIA RTX A6000 GPU) system. 
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170 To test the performance of ML models, we used 1595 randomly selected images, excluding 

171 those used for training, to evaluate their classification accuracy. We employed standard 

172 performance metrics, including accuracy, precision, recall (i.e., sensitivity), specificity, F1 score, 

173 and Matthews’s correlation coefficient (MCC) (Supplementary Table 1), obtained from each 

174 model to determine their effectiveness.56 We conducted all statistical analyses and data 

175 visualizations using TensorFlow and TensorBoard tools with necessary Python libraries as 

176 matplotlib, NumPy, Keras, Sklearn, pandas, torch.57, 58 The comparison primarily centered around 

177 specificity and sensitivity values, which are metrics influencing overall performance and gives 

178 information about other metrics. 

179 Our analysis of the ML models revealed that logistic regression and Random Forest models 

180 exhibited exceptional sensitivity (>90%), while K-nearest neighbors and Random Forest models 

181 demonstrated high specificity (>80%) (Figure 2a). The results showed that the highest sensitivity 

182 value was obtained from the Random Forests (95.52%) and the highest specificity value was 

183 obtained from K-nearest neighbors (89.68%) ML models. we assessed the confusion matrix to 

184 better understand the positive and negative predictions. Out of 1595 images, 1447 were classified 

185 correctly, with 45 false negatives and 103 false positives. The model primarily made errors in the 

186 classification of negative samples. (Figure 2b and Supplementary Figure 1). The ROC analysis 

187 of the trained models indicated that the Random Forest (AUC: 97%) (Figure 2c) and K-nearest 

188 neighbors (AUC: 90%) have highest area under the ROC, which represents the diagnostic ability 

189 of the model (Supplementary Figure 2). Additionally, the Random Forest model outperformed 

190 others in terms of F1 score (92.8%) and accuracy (90.72%). This shows that the Random Forest 

191 provides most balanced results between precision and sensitivity with highest accuracy. 

192 Consequently, the most effective model was observed as Random Forest with notable metrics as 
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193 95.52% sensitivity, 82.57% specificity, 90.72% accuracy, 90.3% precision, 92.8% F1 score, 

194 79.95% MCC, and 97% AUC (Supplementary Table 1). 

195 To test the performance of DL models, we continued by evaluating the performance of the 

196 selected CNNs architectures using the same dataset of 1595 images. The performance evaluation 

197 step was conducted using developed Python algorithms with the help of Pandas, NumPy, Sklearn, 

198 Matplotlib, Keras and Tensorflow libraries.57 The deep learning models utilized for this evaluation 

199 included MobileNetV2, EfficientNetV2B0, EfficientNetV2B2, DenseNet169, DenseNet201, 

200 InceptionV3, ResNet50V2, EfficientNetB5, and ResNet101V2. In selecting these deep learning 

201 models, we prioritized those that does not require significant computing power and thus ensure 

202 compatibility for evaluation and testing microfluidics at POC. We also ensured that the chosen 

203 models were commonly employed for computer vision tasks, prioritizing ease of integration and 

204 robust performance on POC compatible mobile devices.19

205 Our results indicated that DenseNet169, EfficientNetB5, and EfficientNetV2B0 exhibited 

206 outstanding sensitivity values of 92.63%, 95.82%, and 91.93%, respectively (Figure 3a and 

207 Supplementary Figure 3-5). ResNet50V2 (89.17%) and InceptionV3 (88.49%) demonstrated 

208 high specificity values, while DenseNet169 displayed an exceptional specificity of 92.22% 

209 (Supplementary Table 2). The confusion matrix revealed further insights into the performance 

210 of these algorithms. DenseNet169 algorithm excelled in detecting negative samples, accurately 

211 classifying 545 out of 591, while also achieving the second-highest performance in positive 

212 classification with 930 out of 1004, resulting in the highest overall performance at 92% (Figure 

213 3b). Other algorithms including EfficientNetB5 correctly identified 962 out of the tested 1004 

214 positive samples. However, it misclassified 293 negative samples as positive, resulting in a 50.4% 

215 performance rate for negative samples and an overall performance rate of 79%. EfficientNetV2B0 
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216 exhibited similar performance, albeit with a 7% overall performance rate downgrade, reflecting a 

217 4% difference in true positive performance rate and an 11% decrease in true negative performance 

218 rate. The results of MobileNetV2, EfficientNetV2B2, DenseNet201, InceptionV3, ResNet50V2, 

219 and ResNet101V2 algorithms are shown in Supplementary Figure 4, 5 with misclassification rates 

220 < 38%. The ROC analysis of the trained DL models, ResNet50V2 (AUC: 96%), ResNet101V2 

221 (AUC: 96%), InceptionV3 (AUC: 95%) and DenseNet169 (AUC: 92%) and DenseNet201 (AUC: 

222 90%) had the highest area under the ROC (Supplementary Figure 6, 7). Additionally, the 

223 DenseNet169 model outperformed other models in terms of F1 score (93.94%) and accuracy 

224 (92.48%) (Supplementary Table 2). Overall, DenseNet169 outperformed other models with the 

225 performance metrics and gives the applicable model with 0.92 AUC (Figure 3c). 

226 We compared the performance of Random Forest and DenseNet169, as these models had 

227 outperformed others in our evaluations. To challenge them further, we used a set of 184 microchips 

228 prepared with varying numbers of bubbles. A new test set of images was created under different 

229 environmental conditions than those used during training. This test set included images taken 

230 against different backgrounds (including black, red, brown, metallic grey, and dark blue), rotation, 

231 and brightness. This approach allowed us to assess user experience in suboptimal conditions, 

232 ensuring a thorough and comprehensive evaluation of the models' performance in real-world 

233 microchip testing scenarios. The generated positive and negative prediction rates were analyzed 

234 against the ground truth values of bubbles per chip to evaluate the performance of each model. The 

235 results revealed that the DenseNet169 DL model achieves prediction rates with better performance 

236 compared to the Random Forest ML model with 80.4% and 88.2% accuracy; 77.98% and 91.81% 

237 precision; 81.51% and 87.84% F1 score; 75.3% and 92.31% specificity; and 61.03% and 76.69% 

238 MCC for Random Forest and DenseNet169, respectively. The confusion matrix and ROC analyses, 
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239 on the other hand, confirmed that the DenseNet169 DL algorithm is the optimal prediction model 

240 for testing our microfluidic model, outperforming the Random Forest ML algorithm by 87% in 

241 AUC and 92% in accuracy classifying true positive and true negative (Figure 4b, c).

242 To demonstrate the effectiveness of incorporating AI in real-world sample testing scenarios 

243 using POC-compatible systems, a mobile application capable of running the DenseNet169 model 

244 seamlessly was developed, without the need for further optimization. The application features a 

245 simple interface for initiating model evaluation and presents results in terms of positive and 

246 negative prediction rates, along with images of the tested microfluidic chips (Supplementary 

247 Figure 8). Out of 250 images, 212 were classified correctly, 29 were classified as false negatives, 

248 and 9 were classified as false positives. The model primarily made errors in classifying positive 

249 samples. The performance metrics were as follows: Accuracy: 84.8%, Precision: 93.23%, 

250 Sensitivity/Recall: 81.05%, F1 Score: 86.71%, Specificity: 90.72%, and MCC: 70.09. The deep 

251 learning model achieved an AUC value of 0.90, highlighting its superiority in testing our 

252 microfluidic model with bubbles (Figure 5b). Furthermore, upon examining the confusion matrix 

253 alongside sensitivity and specificity values. Results showed that the DenseNet169 deep learning 

254 model achieved 81.05% sensitivity and 90.72% specificity (Figure 5a). Heatmap analysis was 

255 conducted using images with bubble counts ranging from 0 to 100. The results indicated a higher 

256 margin of error around the threshold of 10 bubbles, particularly chips with around 20 to 30 bubbles 

257 are ~30 % misclassified as negative.

258 Our study provides a comprehensive evaluation of both ML and deep learning DL 

259 algorithms in the context of microfluidics testing under POC settings. Among the ML models, 

260 Random Forest emerged as the top performer with a sensitivity of 95.52%, specificity of 82.57%, 

261 and an AUC of 97%, showcasing its strong capability in accurately classifying microfluidic device 
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262 images. The high sensitivity and specificity values underscore Random Forest's effectiveness in 

263 distinguishing positive from negative samples even in challenging imaging conditions. However, 

264 the higher rate of false positives indicates a potential area for improvement. In contrast, DL models, 

265 particularly DenseNet169, exhibited outstanding performance with sensitivity and specificity 

266 values of 92.63% and 92.22%, respectively. DenseNet169's consistent high performance across 

267 different testing conditions, including variations in background and lighting, highlights its 

268 robustness and adaptability, making it highly suitable for real-world POC diagnostics where 

269 consistent and reliable performance is crucial.

270 Despite the promising results, several challenges must be addressed to facilitate the 

271 widespread adoption of AI in microfluidic POC diagnostics. One key issue is the misclassification 

272 of samples with a marginal number of bubbles, especially around the threshold of 10 bubbles, 

273 which was evident in the heatmap analysis. Further refinement of the AI models and incorporating 

274 additional features or training data will be necessary to enhance accuracy in borderline cases. 

275 Combining multiple algorithms can also help overcome these challenges. For example, employing 

276 ensemble techniques that integrate models like U-Net for image segmentation and Canny edge 

277 detection for edge detection could improve precision in detecting subtle features. Additionally, 

278 integrating algorithms such as YOLO (You Only Look Once) for real-time object detection and 

279 HOG (Histogram of Oriented Gradients) for robust feature extraction can further enhance the 

280 accuracy and reliability of microfluidic POC diagnostics. Such hybrid approaches can leverage the 

281 strengths of different algorithms, providing a more comprehensive and accurate analysis.

282  Moreover, integrating AI models into mobile applications for POC testing will necessitate 

283 ensuring seamless operation across a wide range of devices and environmental conditions, with a 

284 strong emphasis on user-friendliness and reliability. This integration is pivotal for achieving the 
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285 robustness required for practical deployment in diverse healthcare settings. The successful 

286 implementation of AI in microfluidic POC diagnostics has far-reaching implications for the 

287 healthcare industry, especially in resource-limited settings where access to sophisticated medical 

288 infrastructure is often constrained. By enabling rapid, accurate, and on-site testing, AI-driven POC 

289 systems address one of the most pressing challenges in modern medicine: the need for timely and 

290 precise diagnostics. By democratizing access to high-quality diagnostic tools, AI-integrated POC 

291 systems empower frontline healthcare providers with actionable insights, fostering a more 

292 equitable distribution of medical resources. This shift supports personalized medicine approaches, 

293 tailoring treatment plans to individual patient profiles based on accurate and immediate diagnostic 

294 data. Ultimately, the widespread adoption of AI-enhanced microfluidic POC diagnostics can 

295 transform healthcare delivery, making it more accessible, efficient, and responsive to the needs of 

296 diverse populations worldwide.

297

298 Conclusion

299 The transformative impact of AI on healthcare is rapidly increasing, particularly in 

300 advancing precision medicine through accurate and accessible diagnostics. By conducting a 

301 comprehensive comparative evaluation of AI models in testing microfluidics, we have 

302 demonstrated the superiority of AI-driven approaches over traditional methods, particularly in the 

303 context of POC diagnostics. Through the integration of ML and DL algorithms, we created a 

304 diverse ensemble of models capable of leveraging various aspects of the data, thereby enhancing 

305 robustness and generalization performance. Our results revealed that the Random Forest ML 

306 model and the DenseNet169 DL model exhibited exceptional performance, surpassing other 
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307 algorithms in terms of sensitivity, specificity, and AUC values. DenseNet169 integration into a 

308 mobile POC system demonstrated exceptional accuracy, outperforming traditional visual 

309 interpretation by a significant margin. This confirms the potential of AI to revolutionize 

310 diagnostics, offering more accurate and efficient testing solutions in resource-limited settings. 

311 Moreover, our findings highlight the significant role that AI can play into healthcare systems, as 

312 it holds promise for enhancing patient outcomes, streamlining healthcare delivery, and ultimately, 

313 democratizing access to high-quality diagnostic services. Moving forward, further research and 

314 development efforts are warranted to optimize AI algorithms for real-world deployment, ensuring 

315 their seamless integration into clinical practice and maximizing their impact on global health 

316 outcomes.
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327 MATERIAL AND METHODS

328 Microfluidic chip model design and fabrication.

329 We developed a microfluid chip system that features a single microfluidic channel. The 

330 microchip was designed using the vector graphics editor CorelDRAW Graphics suite software, 

331 and fabricated of polymethyl methacrylate (PMMA) (3.125 mm thick), DSA film (100 μm thick, 

332 3M, USA), and glass slides (25 mm x 75 mm). The fabrication process starts by cutting PMMA 

333 and DSA film using a laser cutter (Boss Laser LS-1416, USA). The PMMA was prepared to 

334 contain the microfluidic channel inlet and outlet, while DSA film included the main testing 

335 channel. All materials were precleaned with 70% ethanol, and deionized water using lint-free 

336 tissue. The surface of the cleaned glass slides was treated and cleaned using oxygen plasma (PE-

337 25, 100 mW, 15% oxygen; Plasma Etch Inc.) for 10 minutes. Then PMMA and DSA film were 

338 assembled on the modified glass slide, forming the model microfluidic chip system. Each system 

339 was loaded with platinum nanoparticle-seeded bubbles.  PtNPs synthesized using our previously 

340 published protocol were mixed with a peroxide-containing solution (5% hydrogen peroxide and 

341 20% glycerol) and loaded on chip system.  The concentration of added PtNPs was controlled to 

342 prepare systems with variable numbers of bubbles (0 – >200 bubbles per chip), randomly 

343 distributed within the microfluidic channel.   

344 AI models selection, training and performance testing

345 We selected a set of 15 models that encompass a number of machine learning and deep 

346 learning models, widely reported to have high performance in image classification and pattern 

347 recognition.  The machine learning models included Naive Bayes, Logistic Regression, Decision 

348 Tree, K-Nearest Neighbors, Support Vector Machine and Random Forest, while the deep learning 
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349 models of MobileNetV2, EfficientNetV2B0, EfficientNetV2B2, DenseNet169, DenseNet201, 

350 InceptionV3, ResNet50V2, EfficientNetB5 and ResNet101V2, were selected to support workflow 

351 running on mobile devices and systems. We generated a dataset of 19,097 images of the model 

352 microfluidic system captured using Moto XT1575, iPhone X and Vivo smartphones. The dataset 

353 comprises two groups, i.e., positive (with > 10 bubbles per microchip) and negative (in range of < 

354 10 bubbles per microchip) sample images.  The microfluidic system imaging was performed at 

355 different angles (0 – 360º) and backgrounds and environments to maximize the variations, and 

356 make our dataset more robust and comprehensive. We used 15530 images for training, 1788 

357 images for validation and 1012 images for testing the performance of the selected ML and DL 

358 models in testing the model microfluidic system and classifying samples into positive and negative 

359 based on bubble signal.  We started the process by importing pre-trained models available from 

360 Scikit-learn and Keras libraries to develop the selected ML and DL models, respectively. In the 

361 pre-processing step, the images of our training dataset were resized to the input dimensions of the 

362 selected models, leveraging the features learned by ImageNet pretrained network. We performed 

363 the batch normalization then used Adam optimizer to fine-tune the network using a global learning 

364 rate of 0.001. In addition, we employed a varied number of epochs to test the algorithms optimal 

365 performance and we set the number to 50 epochs. Then we performed the transfer learning by 

366 removing the final classification layer from the chosen networks and trained with our dataset. All 

367 the algorithms were trained on Vector Workstation (Intel i9-10900x CPU and NVIDIA RTX 

368 A6000 GPU, Lambda) and after training, we tested the performance of the best-performing ML 

369 and DL algorithms individually using a challenging dataset of 400 images. This testing dataset 

370 included rotated images, images with various colored backgrounds (matte, bright, reflective), and 

371 images with lens distortion and brightness variations. The ML algorithms were evaluated using 
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372 the sklearn and torch libraries, while the DL algorithm was evaluated using the TensorFlow library. 

373 Performance metrics such as accuracy, precision, sensitivity, and F1-score were employed to 

374 quantitatively measure classification accuracy and the ability of each model to correctly identify 

375 the tested microchip. 

376 AI testing on a POC compatible system. 

377 We utilized the open-source platform Android Studio (version Giraffe 2022.3.1) to develop 

378 an AI-enabled mobile application. Android Studio offers an integrated development environment 

379 (IDE) tailored for Android application development. The application facilitates the capture of 

380 sensor images through the smartphone's built-in camera or from images stored in the device's 

381 memory. A trained DL model, DenseNet169, was converted to TensorFlow Lite and integrated 

382 into the application, which was developed for Android 6.0 (API level 23). This application was 

383 installed on a Moto XT1575 and used as a proof-of-concept system for testing microfluidics with 

384 images simulating real-world conditions. We evaluated the performance of the AI model using a 

385 testing set of 250 images, each featuring 0-100 bubbles per chip. This testing set included images 

386 with challenging backgrounds and imaging conditions, such as noise, blur, hand interaction, 

387 daylight, artificial light, natural and artificial occlusion, resolution variability, and the presence of 

388 small bubbles. The classification results, displayed on the user interface, indicate the probability 

389 of a sample being positive (>50%) or negative (<50%). The correlation between AI-generated 

390 classification results and the number of bubbles per chip was analyzed, and prediction accuracy 

391 rates were employed to generate performance metrics.

392

393
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394

395

396 Figure 1. AI algorithms integration and the tested microfluidic model system. (a) 
397 Microfluidics testing using an integrated POC compatible system running AI algorithm on a 
398 cellphone. The system supports a broad range of AI algorithms including both machine learning 
399 (ML) and deep learning (DL) models.  (b) The developed microfluidic model with a single 
400 microfluidic channel (length 42 mm, width 5 mm and height 100 µm) containing platinum 
401 nanoparticle-seeded bubbles of variable shapes and sizes. (c) Snapshot of the image library of the 
402 tested microfluidic model collected using cellphone POC system (161 randomly selected images 
403 out of 19,097), illustrating the diversity of color, background and brightness. 

404
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405

406

407 Figure 2. Performance evaluation of machine learning in testing microfluidics. (a) Barplots 
408 showing the performance (sensitivity and specificity) of the tested ML algorithms (n = 6). All 
409 algorithms were trained on our dataset of 15,530 images to classify the model microfluidic chip 
410 system with bubble signal into positive or negative around the threshold value of 10 bubbles. (b) 
411 Confusion matrix showing the number of true negative, false positive, false negative and true 
412 positive results when comparing the interpretation of Random Forest ML algorithm to the ground 
413 truth classification results. (c) ROC analysis of Random Forest performance in testing the model 
414 microfluidic chip with bubble signal.

415
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416

417

418

419

420 Figure 3. Performance evaluation of deep learning in testing microfluidics. (a) Barplots 
421 showing the performance (sensitivity and specificity) of the tested DL algorithms (n = 5). All 
422 algorithms were trained on our dataset of 15,530 images to classify the model microfluidic chip 
423 system with bubble signal into positive or negative around the threshold value of 10 bubbles. (b) 
424 Confusion matrix showing the number of true negative, false positive, false negative and true 
425 positive results when comparing the interpretation of DenseNet169 DL algorithm to the ground 
426 truth classification results. (c) ROC analysis of DenseNet169 performance in testing the model 
427 microfluidic chip system with bubble signal.
428
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429

430 Figure 4. Performance evaluation of machine learning compared to deep learning in testing 
431 microfluidics under POC settings. (a) Performance matrices (accuracy, precision, sensitivity, F1 
432 score, specificity, and MCC) of the Random Forest ML and the DenseNet169 DL in testing the 
433 model microfluidic chip system under challenging imaging conditions that simulate POC testing 
434 settings (i.e., different backgrounds, brightness, resolution, cameras, and rotations). (b) Confusion 
435 matrices showing the number of true negative, false positive, false negative and true positive 
436 results when comparing the interpretation of the Random Forest ML and the DenseNet169 DL 
437 algorithms to the ground truth classification results. (c) ROC analysis of the Random Forest ML 
438 and the DenseNet169 DL algorithms performance in testing the model microfluidic chip system 
439 with bubble signal. 
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441

442

443 Figure 5. Performance evaluation of AI in testing microfluidics under POC settings using a 
444 compatible cellphone system. (a) The confusion matrix showing the number of true negative, 
445 false positive, false negative and true positive results when comparing AI (i.e., the DenseNet169 
446 DL algorithm) interpretation to the ground truth classification results based on the number of 
447 bubbles per microchip. (b) ROC analysis of AI performance in testing the model microfluidic chip 
448 system with bubble signal. (c) Heatmap plot of the probability values of the model microfluidic 
449 testing interpretation by AI performance based on the number of bubbles per microchip. 

450
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