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Nanoarchitectonics of metal oxide materials for
sustainable technologies and environmental
applications

Davide Barreca 2 and Chiara Maccato @ *2°

Sustainable development compliant with environment and human health protection motivates researchers
to explore green solutions towards improved economic and social wellbeing. These objectives, still very far
from being achieved especially in developing countries, must necessarily be pursued through the tailored
fabrication of low-cost, eco-friendly, efficient and stable multi-functional materials. In particular,
nanostructures based on first-row transition metal oxides are amenable candidates for clean energy
production, air purification and self-cleaning/anti-fogging purposes, especially if obtained through
fabrication strategies allowing a careful modulation of their characteristics. In this highlight, after a brief
introduction of the above issues, we provide selected representative examples of green oxide-based
nanoarchitectures for the targeted end-uses. Attention is focused on the interplay between the material
chemico-physical properties and the resulting functional performances, with the aim of providing some
hints to control material behavior by design. In addition, we provide a critical outlook not only on the
unigue opportunities, but also on the main open challenges related to the use of the above multi-
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1. Introduction

Over the last decade, the worldwide scientific community has
been paying increasing attention to environment and human
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functional materials, in an attempt to stimulate further advancements in these emerging research areas.

health protection. The synergistic actions necessary to meet
the open challenges associated with the actual safety
requirements’ > are directly dependent on research activities
enabling the protection and valorisation of the natural
capital, an urgent global priority towards improved general
welfare. In this regard, advancements in converging
technologies enabling sustainable energy production, as well
as purification processes yielding self-cleaning systems and
facilitating the access to clean water/air, are a strategic and
green requirement in alignment with the “Do No Significant
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Harm (DNSH)” principle.® Progress in the related fields
inevitably requires the implementation of viable solutions
enabling social/industrial development with negligible
environmental footprint.

A first cornerstone is the decarbonization of the current
energy portfolio to a cleaner and more sustainable one, a
strategic goal to be pursued in alignment with the 2030
Agenda priorities.” The replacement of fossil fuels with
carbon-neutral alternatives is a key challenge to face climate
changes and satisfy the ever-increasing global energy
demand, accelerating the ecological transition dictated by
public policies.® In the framework of clean energy
technologies, the (photo)production of molecular hydrogen, a
strategically appealing energy vector, by water electrolysis,
has drawn enormous attention to suppress the release of
carbon dioxide and other contaminants produced by the
extensive utilization of fossil fuels.»*™** The use of solar light,
an inexhaustible and intrinsically renewable natural resource,
to drive the electrolysis of seawater, the most Earth-abundant
water reservoir (>95% of the total H,0), could open the door
to a large-scale hydrogen integration in the energy models of
a more sustainable society.”'*'*

A second major concern connected with the former one
is the suppression of the ever-growing air contamination,
especially in large cities and industrial areas. Among
harmful atmospheric pollutants, nitrogen oxides (NO,, x =
1, 2), released daily into the atmosphere from fuel
combustion and automobile exhausts, are the main source
adverse effects,”” including photochemical
smog, ozone layer depletion, and acid rain generation,
along with various respiratory infections.'®'” To effectively
achieve the elimination of breathable NO, in urban areas,
heterogeneous photocatalysis assisted by sunlight, oxygen
and water as natural resources holds outstanding
promise.'®'® Similar photoactivated processes have been
recognized as cost-effective and environmentally friendly
routes even for:*>*' (a) the degradation of aqueous
pollutants  into  harmless products, of particular
importance due to the increasing water stress predicted by
the Intergovernmental Panel on Climate Change (IPCC),**
and (b) the fabrication of smart stimuli-responsive systems
featuring anti-fogging and, especially, self-cleaning
properties for solid pollutant degradation, highly requested
in various medical, industrial and technical contexts.>*™2®
Whereas the photodegradation of organic dyes in
wastewater (a) has been the subject of several
studies,”*’ " the implementation of materials for case (b)
featuring reversible hydrophobic/hydrophilic switching has
been comparatively much less investigated.

The trait d'union that could significantly accelerate
significant advancements in the target fields is the
engineering of active and economically viable multi-
functional catalytic platforms endowed with environmental
friendliness and sufficient time stability.”> In order to
empower enhanced sustainability from a  greener
perspective, the development of such materials in a

of various
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supported form is a mandatory task: - to replace the
state-of-the-art catalysts based on noble metals (such as the
highly regarded Ru and Ir oxides), suffering from toxicity,
supply shortage, high cost, and limited life cycle;>"%**3
- to substitute the largely employed powder-based materials,
whose on-site utilization is prevented by the tendency to
sinter/deactivate and inconvenient recovery processes after
912:18,19:34 pegpite the globally undertaken efforts, the
implementation of stable and efficient systems still
remains an open and challenging task. The modulation of
material composition, structure, and morphology offers a
broad perspective for property tailoring in the framework
of nanoarchitectonics, an emerging paradigm in current
nanomaterials  science based on the synergistic
combination of nanotechnologies with other specific
disciplines to yield systems endowed with tailored
information.*>*® Parallel studies have highlighted the
interest in controllable material construction from
nanosized units, a strategically appealing alternative to
benefit from combined effects arising from the high active
area, large defect content, enhanced light harvesting, and
charge carrier confinement. Among the possible material
classes, metal oxide based-nanosystems offer an extremely
attractive playground bridging together the variety of
properties of inorganic materials and the unique features
of nanostructures.”*”™*° A careful modification of the latter
by suitable preparation techniques represents a valuable
tool to underpin advanced applications linked to safety
and sustainability. Among the different routes, inherent
advantages are offered by hydrothermal approaches,'**%*
liquid phase processes,****** chemical vapor deposition
(CvD),>*®** and template syntheses,”>*” the latter
providing a unique way to produce nanoarchitectures with
uniform dimensions.

use.
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Fig. 1 Schematic overview of the materials targeted in the present
highlight and the pertaining functional applications.
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In this widespread context, the present highlight aims at
providing a brief overview on representative case studies
related to supported metal oxides, eventually functionalized
with dispersed metal or oxide activators, for sustainable
energy  generation  through splitting  and
photoactivated processes for: - NO, abatement, aimed at air
purification; - anti-fogging and self-cleaning purposes
(Fig. 1). The three targeted applications are connected by
the key importance in triggering technology progress
towards an improved environmental safeguard, and by the
possibility of using controlled irradiation to activate the
involved processes. In particular, in this manuscript the
attention is intentionally paid to supported nanostructures
based on eco-friendly, cost-effective, and abundant first-row
transition metal oxides (Mn,Os;, MnO,, Fe,Os;, ZnO). The
latter are considered either as such, or combined with
suitable agents in nanocomposites/nanoheterostructures,
benefitting from the combination of the single constituents
to yield a superior functional behaviour. The examples
examined herein encompass various kinds of nanomaterials,
with no systematic attempt to cover the whole pertaining
literature work. In fact, since an endless range of
nanoarchitectures can be virtually fabricated, the aim of
this contribution is far from providing a detailed technical
review, but rather to deliver an author's perspective on
representative research activities actually in the spotlight to
mitigate the environmental concern through the use of
non-toxic systems. To this aim, our main purpose is to
describe selected relevant milestones, as well as open issues

water

still  hindering real-world utilization. In the end,
perspectives for future developments are also briefly
summarized.
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2. Energy conversion: oxygen
evolution reaction in water splitting

Molecular hydrogen, an attractive energy carrier with high
efficiency, is expected to play an important prospected role in
supporting mankind on the road to carbon neutrality,***%*°
Nonetheless, at present H, is mainly obtained from fossil fuel
reforming processes (‘grey hydrogen’),>® without capturing
the released greenhouse gases. ‘Blue hydrogen’ is essentially
the same as grey hydrogen, but with capture and storage of
the released CO,. Though being typically regarded as a low-
carbon fuel, ‘blue hydrogen’ requires a considerable amount
of energy for its production, which renders it expensive. In
order to go “out of the blue”, the solution is offered by ‘green
hydrogen’,>® generated using carbon-free electricity (in
perspective, either wind-based or from photovoltaics) for
water splitting. The latter, possibly activated by illumination,
is indeed an outstanding alternative for H, generation free
from any ecological footprint.>’® In general, (photo)
electrochemical water splitting involves two different half-
reactions occurring at interconnected electrodes (Fig. 2).
Electrons released in the oxygen evolution reaction (OER) at
the anode, typically based on an n-type semiconductor,>”>®
are transferred through an external circuit to the counter-
electrode, a metal or a p-type semiconductor (cathode).>® At
the interface of the latter with the electrolyte, electrons can
directly take part in the hydrogen evolution reaction
(HER).57’60

Nevertheless, H,O splitting is a thermodynamically up-hill
process involving a large Gibbs free energy positive change
(AG® = 237 kJ mol™).***>®" In particular, the bottleneck
limiting its overall efficiency is the anodic OER, a four-electron

Hydrogen evolution
reaction (HER)
2H* +2e¢ > H,

cathode

Fig. 2 Sketch of an electrochemical cell for water

splitting,
photographs of cells used for electrochemical tests are also reported. WE =
counter-electrode. Reproduced with permission from ref. 33 and 60. Copyright 2011, Wiley-VCH, and 2020, The Royal Society of
Chemistry, respectively.
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with

Oxygen evolution reaction
(OER)
2H,0 —» O, +4H* + 4¢

() H,0

indication of the cathodic and anodic
working electrode; RE =

processes. Digital
reference electrode; CE =
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process for the evolution of one O, molecule,******7%% which
is both kinetically and thermodynamically demanding. As a
consequence, eco-friendly and highly-efficient electrocatalysts
enabling to reduce the overpotential and expedite the reaction
kinetics are requested as an alternative to the state-of-the-art
RuO, and IrO, ones.>?* Accordingly, water electrolysis to yield
green hydrogen has been investigated in freshwater
comprising acid, base or buffer systems,’>**®° and is a
satisfactory way to obtain sustainable energy using accessible
electricity as a driving force.

The key indicators for OER functional performances of the
target catalysts are the delivered current density, the
overpotential [typically calculated as the difference between
the experimental potential value at 10 (or 100) mA cm ™ and
the thermodynamic potential for O, evolution (1.23 V)°], and
the stability upon prolonged testing, of crucial importance
for practical end-uses. In the current tide of studies on
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related topics, a valuable example of OER electrocatalysts
based on green and earth-abundant elements is provided by
Fe,0;@CuO core-shell nanotube heterostructures.’> The
target materials, prepared by a multi-step strategy (see the
caption for Fig. 3), were characterized by an even distribution
of nanotubes with an open-ended structure (Fig. 3a and b)
conformally covering the underlying Cu foam. The analyses
revealed an even distribution of Cu and Fe over the inner
and outer nanotube walls, respectively (Fig. 3c and d),
evidencing thus the Fe,O; shell and CuO core structure.
Photoelectron spectroscopy characterization confirmed the
presence of such oxides and the formation of
heterojunctions, leading to electronic structure modulation
of both CuO and Fe,O; thanks to the nanometric spatial
organization (Fig. 3c).

Fig. 3e compares the linear sweep voltammetry curves of
single phase and heterostructured systems. The recorded

100 nm 100 nm
S — Ir0,ICF
by 2071 — Fe:0:@Cu0 NTs/CF U
T /
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»
e 40
©
- - =i
= :
%
o124
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(a) Scanning electron microscopy (SEM) image of Fe,O3:@CuO heterostructured core-shell systems. The nanomaterials were in situ grown

from a copper foam (CF) through a liquid-phase route involving the initial formation of CuO nanorods (NRs), subsequent functionalization with
Fe,O3 nanoparticles (NPs) and final annealing in air. Representative transmission electron microscopy (TEM) (b) and high resolution (HR)-TEM (c)
images of Fe,0s@CuO nanotubes (NTs). (d) Energy dispersive X-ray spectroscopy (EDXS) Cu, Fe, and O elemental mapping of a single Fe,Os@CuO
nanotube, along with an overlaid Fe and Cu image. (e) Linear sweep voltammetry (LSV) curves of Fe,Os@CuO NTs/CF recorded in 1.0 M KOH
solutions. (f) Chronopotentiometric analysis of Fe,Os@CuO NTs/CF and IrO,/CF at 100 mA cm™2 for 15 h (inset: digital photograph of oxygen
bubbles evolved at the electrode surface during the process). Reprinted with permission from ref. 32. Copyright 2020, American Chemical Society.
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data indicated that Fe,O; and CuO needed an overpotential
of 724 and 433 mV, respectively, to reach 100 mA cm 2,
against a value of only 398 mV for Fe,O;@CuO. The latter,
lower than that of the benchmark OER IrO, -catalyst,
highlighted the attractive behavior of Fe,O;@CuO, better
than those of various Cu-based electrocatalysts supported on
foam substrates.*” This result can be traced back to the high
material active area, as well as to the electronic interplay
between the single heterostructure components. The latter,
in turn, tuned the system electronic structure, influencing
the reactant adsorption strength and the energy barriers of
the various process steps, resulting ultimately in a favorable
improvement of the OER kinetics.**

Chronopotentiometric tests (Fig. 3f) evidenced a high
electrocatalyst durability, of great importance for practical
real-world applications.

View Article Online
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In comparison to a reference IrO,-based electrode, Fe,-
O;@CuO NTs/CF displayed a negligible potential variation
during prolonged electrochemical testing at high current
density. This long-term stability under harsh operational
conditions, confirmed also by post-operando chemico-physical
analyses, opens up amenable opportunities for an eventual
engineering of the target electrocatalysts.

Attractive advantages in this regard can be also offered by
a joint natural capital exploitation, with regard to the use of
seawater and solar radiation.'*®”7° In fact, seawater
electrolysis could be activated by sunlight and renewable
electricity in energy-rich coastal/arid regions, yielding a
sustainable H, production of key importance for the future
energy landscape.®'* In this context, Li et al.™® have focused
on the fabrication of Fe,03/WO; nanorod arrays on
conducting glass substrates using a controllable and cost-

Bpey Cv:-lic(lDBH
,; Na,C,0, 25
Hydrothermal Deposi?on-
treatment annealing
FTO FEOOHNRs  21n°ain9 - Fe,0,W0, NRs

(100°C, 10 h)

Intensity (a.u.)

26(°)

Fig. 4

Current density (mAxcm)

-

o

o

-l

Potential vs. RHE (V)

(@) Hydrothermal route and deposition-annealing process for the growth of Fe,O3/WO3z NRs on fluorine-doped tin oxide (FTO) glass

substrates. Top-view SEM micrographs of Fe,Os (b) and Fe,O3/WOs nanorods (c). (d) X-ray diffraction (XRD) patterns of Fe,Os NRs, Fe,O3/WOs3
NRs, and WOs films. (e) Chopped photocurrent density vs. potential plots for the same systems, recorded in 0.1 M Na,SO,4 aqueous solutions under
100 mW cm™ (AM 1.5G) illumination. Reprinted with permission from ref. 13. Copyright 2016, Elsevier.
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effective preparation procedure sketched in Fig. 4a. As can be
observed in Fig. 4b, the adopted route enabled the
fabrication of dense Fe,O; NR arrays (average diameter ~ 200
nm). The introduction of WO; resulted in a slight increase of
the NR diameter and in the formation of more rounded and
interconnected tips (Fig. 4c). The Fe,03/WO; X-ray diffraction
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patterns (Fig. 4d) confirmed the obtainment of phase-pure
Fe,0; and WO3;, excluding the occurrence of ternary phases.
These results, along with the outcomes of additional TEM

analyses, demonstrated the presence of Fe,0;/WO;
heterostructures, enabling an enhanced separation of
photogenerated charge carriers."? In fact,
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Fig. 5 Secondary ion mass spectrometry (SIMS) depth profiles of Fe;O3-Mn,0Os3 (a) and Coz04-Mn,0O5 deposits (b) obtained by plasma enhanced-
chemical vapor deposition (PE-CVD) of manganese oxides on FTO, functionalization with Fe,Oz and CozO,4 by sputtering, and final annealing
under an Ar atmosphere. (c) HR-TEM image of an Fe,O3-Mn,03 specimen. The white box marks a single Fe,Oz particle, whose enlargement is
given as an inset. The corresponding Fourier transform (FT) pattern ([001] zone axis) in the upper left corner highlights the occurrence of cubic
y-Fe,O3 polymorph. (d) HR-TEM image of a Coz04-Mn,03 sample. The white box marks a single CozO,4 nanoparticle, whose enlargement is
provided as an inset. The corresponding FT pattern ([001] zone axis) in the top left corner indicates the presence of cubic CozO;,. (e) LSV curves of
the target materials registered in simulated alkaline seawater. The curves for bare Fe,Os and CosO4 are also reported. Vertical and horizontal
dashed lines correspond to an overpotential of 500 mV and a current density of 10 mA cm™2, respectively. (f) Chronoamperometry curves of
Mn,Os-based electrodes in simulated alkaline seawater recorded at 1.94 V vs. RHE. Digital photographs of the reference solution (2.0 x 107 M,
pale pink) (g) and working solution (colourless) (h) in the iodometric titration for the identification of possible hypochlorite species generated
during the OER, showing the absence of ClO™ production in case (h).° Reprinted with permission from ref. 9. Copyright 2021, Elsevier.
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photoelectrochemical functional tests performed on the
target electrocatalysts (Fig. 4e) revealed a rapid photo-
response in the whole potential interval over several on-off
cycles. As concerns the Fe,0;/WO; heterocomposite, the
photocurrent onset was recorded at 0.59 V, and the system
displayed appreciably higher performances in comparison to
the single oxide counterparts, yielding 1.03 mA cm™ at 1.23
V. This enhancement was in fact attributed to the interfacial
formation of Fe,03/WO; heterojunctions, minimizing
detrimental electron-hole recombination."**" Notably, tests
carried out on the same materials in photoelectrochemical
splitting of natural seawater yielded almost the same
photocurrent density values as those of Fig. 4e, indicating
that these electrocatalysts can effectively sustain seawater
photosplitting. The system photoresponse, tested by
photocurrent-time measurements in natural seawater at 1.23
V vs. RHE, revealed that Fe,O3;/WO; heterostructures
maintained ~65% of the initial value after continuous
illumination for 5 h, a key point in view of eventual large-
scale implementation.

Recently, our research group reported on the fabrication
of seawater oxidation electrodes based on manganese(ir)
oxide nanocomposites with Fe,O; and Coz;0,, well-known
OER catalysts.” Such materials, developed by a multi-step
plasma-assisted process, featured a close contact between
Mn,0; and the functionalizing agents (Fig. 5a and b), as
demonstrated by the dispersion of Fe,O3; and Co;0, even into
the inner Mn,0; deposit regions. This enables the materials
to benefit from the mutual component interplay to boost the
resulting electrocatalytic activity. Regarding the Co030,-
containing material (Fig. 5b), differently from the Fe,O; case,
the outermost sample regions were Co-rich, a phenomenon
directly influencing the ultimate electrocatalytic activity, as
discussed below. The Mn,O; deposit was characterized by the
assembly of high area dendritic structures (Fig. 5¢ and d), in
close contact with Fe,O; or Co;O, nanoaggregates (mean
dimensions ~ 8 and 4 nm, respectively). Electrochemical
tests in simulated evidenced higher current
densities (Fig. 5e) and lower overpotentials for the composite
systems in comparison to the corresponding single phase
oxides (e.g, 490/450 mV for Fe,03-Mn,03/C0;0,-Mn,0;
against 500 mV of Mn,0;).° The obtained performances,
comparing favorably with previously reported ones for
manganese oxide-based systems, could be ascribed both to
the intrinsic OER catalytic activity of Fe,O; and Co;0, and to
the formation of oxide/oxide heterojunctions, yielding
improved charge carrier separation. An additional effect
accounting for the better C0;0,-Mn,0O; performances was
the different in-depth distributions of Fe,O; and Cos;0, (see
above and Fig. 5a and b). In fact, although the more even
dispersion of the former can be deemed to promote a closer
contact with Mn,0; boosting functional activity, the
formation of pH gradients during OER around Fe,0;
nanoparticles in the inner Mn,0O; regions counterbalances
this effect.’ Consequently, the OER activity of Fe,0;-Mn,03
is reduced in comparison to C0;0,~Mn,0;.

seawater
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Chronoamperometric tests (Fig. 5f) evidenced that, after an
initial transient period, all the materials exhibited good
stability, in particular the Co03;0,-Mn,0O; one. Additional
analyses and iodometric titration data’® ruled out the
presence of hypochlorite traces (compare the pale pink
reference solution and the colorless OER solution,
Fig. 5g and h), indicating a remarkable selectivity towards O,
production against Cl, evolution. The proposed catalyst
combinations pave the way to the implementation of cost-
effective electrodes for seawater splitting to H,, an open
challenge of key relevance for a real-world end-use.

3. Air purification: NO, abatement

As already mentioned, the damages resulting from nitrogen
oxide release into the outer atmosphere are a cause of great
concern. Although environmental USA and EU agencies limit
the hourly allowed NO, air concentration to 0.1 ppm and 0.2
ppm,'® these values are hardly attained, especially in highly
populated cities, and NO, emissions are responsible for
thousands of early deaths worldwide."”**”"7> These issues
have significantly stimulated the interest in heterogeneous
photocatalysis involving the use of solar light, oxygen and
water as natural resources for an efficient NO, removal from
the atmosphere (De-NO,).”>”7® The photo-activated De-NO,
process promoted by a suitable semiconductor (SC) material
is sketched in Fig. 6 and can be described as follows:"®**7%72

SC+hv—h"+e (1)
h*+H,0 - "OH + H' (2)
e +0,—~ 0, (3)
NO +°'0,” — NO;~ (4)

.c NO,-

9 PHOTOOXIDATION

MEOS

PHOTOOXIDATION

,{\ (8,

NO,-
. NO,
+
©
S L

Fig. 6 Simplified sketch of the mechanism of photocatalytic NO
oxidation promoted by a semiconducting material.
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Fig. 7 (a-d) SEM images for ZnO deposited on rice husk (RH) supports. The materials were obtained by liquid phase deposition from Zn(i) acetate
on RH and final annealing at 600 °C for 2 h (dZn@RHA-2, (a) and (c)) and 4 h (dZn@RHA-4, (b) and (d)). (e and f) Nitrogen oxide concentration
profiles obtained upon artificial sunlight illumination (UV-vis) for dZn@RHA, mZn@RHA and Zn samples. mZn@RHA-2 and mZn@RHA-4 samples
were obtained from milling of Zn(i) acetate and RH, and calcined at 600 °C for 2 or 4 h. The curves pertaining to reference ZnO samples (Zn-2
and Zn-4, treated for 2 or 4 h) and commercial TiO, P25 (Evonik)® are also shown. (g) Bar plot (%) of NO conversion (blue), released NO, (orange),
NO, conversion (grey; [NO,]I = [NO] + [NO,]) and selectivity (yellow) for the target photocatalysts. The selectivity (%) is defined as {(INO,l, -
INO,Jout)/INOlin} x 100/{(INOJ;i, = [NOlou)/INOIlin}, where [NOIJ;, and [NO,li, and [NOlyy,: and [NO,lo,: are the inlet and outlet concentrations,
respectively.*?”478 Reprinted with permission from ref. 42. Copyright 2019, Elsevier.
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NO + ‘OH — HNO, (5)
HNO, + ‘OH — NO, + H,0 (6)
NO, + ‘'OH — NO,;” + H' (7)

First, illumination with radiation of suitable wavelength
(step 1) results in the formation of electron-hole pairs, which
can reach the material outermost surface and trigger the
involved redox processes. In particular, photogenerated
charge carriers can react with water and oxygen molecules
[stages (2) and (3)], yielding the formation of reactive oxygen
species (ROS), the main actors of the whole process. The
resulting ‘O,  promotes NO oxidation to nitrate species (4).
In parallel, "'OH radicals can also trigger NO;~ formation
through the intermediate oxidation steps NO — HNO, —
NO, — NOj;™ [stages (5), (6), and (7)]."® In this regard, efforts
have been focused on the complete oxidation to harmless
nitrate species, minimizing the release of NO,, an
intermediate even more toxic than NO.}”7*777% Hence, in a
sustainable De-NO, process, an important goal is the
obtainment not only of the highest NO conversion efficiency,
but even of the best selectivity, expressing the ratio of
degraded NO completely converted into harmless nitrate
rather than into toxic NO,. These features have to be
hopefully accompanied by a good photocatalyst service life.

The majority of studies in this field have so far focused on
the use of TiO,, but the corresponding processes suffer from
a low efficiency due to its large band gap (Eg = 3.2 eV),
requiring activation by UV light, which accounts for only 4%
of the solar spectrum.'”™”77%2 Furthermore, TiO, may be
carcinogenic when inhaled.** These issues have significantly
boosted the attention towards alternative eco-friendly
materials, such as ZnO, whose performances can also be
improved through the construction of heterostructures®*®’
in terms of extended light absorption and improved
electron-hole separation.”*#5:89

In this context, the group of Sanchez et al. has recently
proposed a sustainable and efficient De-NO, photocatalyst
based on ZnO supported on rice husk, an agricultural low-
cost waste product successfully used as a green raw
material.*> The target systems, prepared by a straightforward
synthetic procedure (summarized in the caption of Fig. 7),
were characterized by the uniform coverage of the cob-
shaped skeleton by crystalline ZnO agglomerates (70-180 nm;
Fig. 7a-d). The annealing duration (2 vs. 4 h) did not
appreciably influence the ZnO morphology (compare Fig. 7a-
¢ with Fig. 7b-d). The skeleton acted as a support for the
growth of zinc oxide particles, which, in the case of systems
obtained by milling (see caption for Fig. 7), were organized in
amorphous and larger aggregates (sizes up to 280 nm). The
beneficial effect of rice husk was also confirmed by the
surface area, which dropped from 40-53 m> g* to <5 m”> g™*
for bare ZnO reference specimens.*>

When the systems were illuminated, nitrogen monoxide
degradation was observed, as confirmed by the rapid drop of
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NO concentration profiles, which reverted to the original
values when irradiation was turned off (Fig. 7e). The analysis
revealed that the NO conversion efficiency was related to the
sample surface area, being ~75% for the composite samples
[and commercial TiO, P25 (Evonik), tested for comparison]
and decreasing to =50% for the bare ZnO reference samples
(Fig. 7e). The release of highly toxic NO, (Fig. 7f) was directly
dependent on material nature. In the case of TiO, P25, NO,
emission underwent a progressive increase under
illumination, in line with previous literature data.’® In a
different way, NO, formation was inhibited for bare ZnO and
became negligible for the ZnO systems supported on rice
husk.

Fig. 7g compares the NO conversion and NO, emission
with the corresponding selectivity for the various specimens.
The remarkable selectivities (>70% for ZnO on RH),
accompanied by a high NO, conversion (=70%), outperform
the TiO, P25 reference and compare very favorably with
literature reports.**> These results can be traced back to the
influence of the used support on ZnO growth, enabling the
achievement of higher surface areas which, in turn, favor the
accessibility of reactive sites to gaseous molecules. These
results, along with the biosafe character, low cost and
reusability of the developed photocatalysts, as well as the
straightforward preparation route, are highly appealing for
their eventual utilization in real-world air purification.

Another example of ZnO-based materials for De-NO,
applications concerns the development of FTO-supported
ZnO-WOj; nanoheterostructures by CVD of ZnO, followed by
WO, dispersion by sputtering.”” X-ray photoelectron
spectroscopy (XPS) analyses (Fig. 8a and b) yielded Zn 2ps,
binding energies (BEs) of 1021.8 and 1022.3 eV, respectively,
for bare ZnO and ZnO-WO;, suggesting a ZnO — WO;
electron transfer in the latter,”>’ as confirmed by the W
4f,, BE (35.5 eV), slightly lower than typical WO; values.”® %
These issues have a direct impact on material performances
(see below and Fig. 8h). SIMS analysis (Fig. 8c) highlighted
that in-depth tungsten distribution was nearly parallel to the
zinc one. The high intermixing of the two oxides,
advantageous to guarantee an intimate contact yielding a
high density of heterojunctions, was efficiently achieved
thanks to the inherent sputtering infiltration power,
especially into open area systems as the present ZnO
ones.””””7 In  fact,  morphological  investigation
(Fig. 8d and e) evidenced the formation of porous deposits
(thickness = 180 nm, root-mean-square roughness ~ 55 nm),
with no appreciable modifications in comparison to the
pristine ZnO. Photocatalytic tests indicated that, whereas in
the dark no degradation occurred, NO removal rapidly
increased upon illumination for both specimens (Fig. 8f),
revealing a higher activity for ZnO-WO;. The latter was also
more selective than bare ZnO in promoting the complete NO
photo-oxidation to nitrate species (Fig. 8g). The total NO,
removal values were estimated to be 2960 and 2300 ppm m™
for ZnO-WO; and bare ZnO, respectively. The beneficial
performance improvement induced by ZnO functionalization

This journal is © The Royal Society of Chemistry 2023
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Fig. 8 W 4f (a) and O 1s (b) photoelectron peaks for ZnO nanomaterials and ZnO-WOs nanoheterostructures supported on FTO substrates. The
systems were prepared by the initial CVD of ZnO, and the subsequent WOj3 introduction by sputtering.”” (c) SIMS depth profile for a ZnO-WOs3
specimen. (d) Representative plane-view and cross-sectional SEM (d) and AFM (e) micrographs of ZnO-WOs. (f) NO removal vs. time and (g) the
corresponding NO abatement selectivity (g) for the same specimens under irradiation with artificial sunlight (UV-vis). Experiments were performed
under a continuous NO supply of 150 ppb. Selectivity is defined as in Fig. 7. (h) Schematic band energy diagram for ZnO-WO3 heterostructures
and the corresponding charge carrier separation under UV-vis illumination. Reproduced with permission from ref. 77 and 91. Copyright 2018, The

Royal Society of Chemistry, and Elsevier, 2013, respectively.

with WO; was attributed to an enhanced electron-hole
separation promoted by the effective coupling of the two
oxides.”>'°"1%> Owing to the different positions of valence
and conduction band edges of the single oxides (Fig. 8h),
excited electrons can in fact be transferred from ZnO to WO;
(as demonstrated by XPS, see above), while holes flow in the
opposite  direction.”*> Hence, electrons and holes
accumulate in the WO; CB and ZnO VB, respectively,
promoting O, reduction and H,O oxidation to yield 'O, and
‘OH, the main De-NO, active species.

The proposed fabrication strategy can be successfully
adapted to a variety of supports, as well as extended to the
preparation of other photoactive hetero-composite
architectures. In this regard, a representative example is

This journal is © The Royal Society of Chemistry 2023

provided by supported nanostructures based on the less
studied B-Fe,O; polymorph, utilized for the first time as a De-
NO, photocatalyst. The systems were obtained by the CVD of
B-Fe,O; on Si substrates, followed by functionalization with
CuO by sputtering (caption for Fig. 9).'® XPS analyses
revealed that, for bare Fe,O3, the Fe 2p peak position [BE(Fe
2pss) = 711.2 eV] matched the B-iron(m) oxide value,'>3**%3
whereas it underwent a small downward shift for Fe,0O;—CuO
(Fig. 9a). This variation, in conjunction with the Cu 2p BE
slightly higher than for CuO [BE(Cu 2ps) 934.0 eV,
Fig. 9b], highlighted the occurrence of a CuO — Fe,0;
electron transfer at Fe,O;/CuO interfaces. The O 1s
photopeak (Fig. 9¢) resulted from the contribution of a main
band, due to lattice O (I), and a second signal due to O

CrystEngComm, 2023, 25, 3968-3987 | 3977
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Fig. 9 Fe 2p (a), Cu 2p (b) and O 1s (c) photoelectron peaks for Fe,Os and Fe,Oz-CuO nanoheterostructures supported on Si substrates. The
occurrence of CuO was confirmed by the presence of shake-up peaks. The materials were fabricated by CVD of Fe,Oz and functionalization with
CuO by sputtering. (d) Plane-view and cross-sectional (inset) SEM images of Fe,Oz-CuO. (e) Concentration profiles obtained during NO
photodegradation for Fe,Oz and Fe,Os-CuO upon artificial sunlight illumination (UV-vis). The curve for bare CuO is also shown for comparison. (f)
Electron paramagnetic resonance (EPR) spectra of Fe,Oz and Fe,O3-CuO registered in a 45 mM methanolic solution of the spin-trapping
5,5-dimethyl-1-pyrroline N-oxide agent (DMPO), for ‘O,  detection. (g) Schematic representation of the type-Il heterojunction energy band
diagram for Fe,O3-CuO (approximate energy levels on the RHE scale). Reprinted with permission from ref. 18. Copyright 2022, Elsevier.

species chemisorbed on oxygen vacancies (II).'°* The latter
can favorably promote a higher reactivity in NO
chemisorption, being thus beneficial for De-NO,
applications.®® Material morphology was characterized by an
even distribution of faceted pyramids, whose assembly
yielded an open structure (Fig. 9d). This feature anticipated
attractive performances thanks to the high contact area with
the reaction environment, helpful even for radiation-induced
charge transfer at the material surface.>'>®' As shown in
Fig. e, after 1 h illumination, a NO removal of 20 ppm m™
was measured for Fe,0;—CuO, an appreciably superior value
in comparison to the single oxides. In addition, the negligible
release of gaseous NO, highlighted the advantages featured

3978 | CrystEngComm, 2023, 25, 3968-3987

by nano-heterostructured systems for De-NO, processes
selective towards NO; formation.

To attain a deeper understanding of the occurring process,
EPR analyses were carried out. As observed in Fig. 9f, the
intensity of the sextet corresponding to the formation of the
DMPO-"0,” adduct®® (undetectable in the dark) underwent
an increase for Fe,0;—CuO in comparison to bare Fe,O;. This
phenomenon revealed an enhanced ‘O, generation for the
heterocomposite catalyst, accounting for the improved
performances in NO removal. Additional analyses evidenced
that the target photocatalysts can generate even ‘'OH radicals.
The enhanced ROS formation for Fe,O;-CuO confirmed the
formation of heterojunctions between the single oxides and,

This journal is © The Royal Society of Chemistry 2023
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in particular, the occurrence of electron transfer phenomena,
which can be interpreted based on a type-II charge transfer
mechanism (Fig. 9g).'% Briefly, irradiation of both Fe,0; and
CuO yields electron excitation and subsequent transfer from
CuO to the Fe,O; conduction band, while holes are
accumulated in the CuO valence band. Accordingly, charge
carrier recombination is suppressed and photogenerated
electrons and holes can effectively promote the formation of
‘O, and 'OH. Overall, these studies broaden the perspectives
of photocatalytic NO oxidation, providing useful guidelines
for the nano-engineering of active and economically viable
supported photocatalysts for air purification.

4. Anti-fogging and self-cleaning
platforms: smart light-responsive
systems

The last application field dealt with in the present
manuscript concerns the design and fabrication of the so-
called smart materials, which are basically light stimuli-
responsive nanosystems exhibiting anti-fogging and self-
cleaning properties of interest in different practical and
industrial contexts.*®

The phenomena underlying such end-uses are photo-
induced hydrophilicity (PH) and photocatalytic oxidation
(PCO) processes, which are, respectively, the basis of anti-

View Article Online
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fogging and self-cleaning systems. As sketched in Fig. 10,
both PH and PCO involve as the first step the photo-
excitation of a suitable semiconductor, yielding the
formation of electron-hole pairs. The subsequent fate of
these charge carriers critically determines the overall
material activity.”>'®” In the case of PH (Fig. 10, left side),
photogenerated electrons and holes can react with lattice
metal centers and bridging O surface species, respectively.
As reported for TiO, and ZnO,**?%'°%1% this behaviour
results in the formation of reduced metal defective sites
and O vacancies, which play an important role in the
subsequent events. In fact, water exposure induces the
formation of hydroxyl groups chemically bonded to the
material surface, rendering it hydrophilic, with important
practical outcomes. Upon sufficiently long system storage
in the dark, the wettability is slowly reconverted to the
initial hydrophobic state'® through a progressive decrease
of the surface -OH group content. In a different way, in
the case of PCO, photogenerated electrons and holes
separately travel to the semiconductor surface and interact
with surface species (oxygen and organic pollutants),
resulting in the photo-induced oxidation of the latter (ie.,
the degradation of surface contaminants).>®

The effective tuning of surface wettability via combined
chemical/structural modifications has been the subject of
interest for several applications.>*"'® An important example
is offered by anti-fogging coatings, since fogging nuisance is

Photo-induced hydrophilicity (PH) vs. Photocatalytic Oxydation (PCO)

Photogenerated e/h* pairs in a semiconductor

Hydrophobic: 90 < 8 < 150°
Superhydrophobic: 150° < 8 < 180°

o

Superhydrophilic: 0° < 0 < 5°

02‘
- Reduction
A
[ o 7
PCO
D e + 02 — 02-
h* + OH-— OH*

Oxidation
D#

substrate

(2]

Hydrophilic: 5 < 8 < 90°

Fig. 10 Schematic representation of the processes involved in the photo-induced hydrophilicity and photocatalytic oxidation processes activated
by a semiconducting material. The left panel presents two digital photographs of an automotive side view mirror, uncoated (a) and coated (b) with
TiO,, demonstrating the anti-fogging effect. The right panel photographs provide two examples on the use of self-cleaning coatings. (c) Window
at the museum of photocatalysis in the Academy of Sciences and technology, Kanagawa, Japan. A self-cleaning TiO, coating is absent and present
on the left and right glass sides, respectively. (d) National Centre for Performing Arts, Beijing, China, coated with self-cleaning materials.
Reproduced with permission from ref. 24 and 106. Copyright 2012, The Royal Society of Chemistry, and Springer Nature, 2021, respectively.
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ubiquitous on eyeglasses, ski/SCUBA goggles, and rearview
mirrors (Fig. 10a and b).**'°*''! In addition, surface fog
decreases the efficiency of analytical/medical instruments
and accounts for production capability losses in greenhouse
windows, solar energy arrays, and buildings."***™ In fact, the
combination of PH and PCO functionalities has been utilized
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to develop anti-fogging and
automotive glasses, optics, energetics, furniture, and
constructions.’®™? In a nutshell, illumination can
decompose the dirt and render the material surface (super)
hydrophilic. Subsequently, water, for example from rain,
spreading on the surface, can produce the desired
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Fig. 11

(a-c) TEM images at different magnification levels of a single ZnO NR functionalized with Au NPs. The systems were fabricated by

hydrothermal deposition of ZnO NRs on FTO substrates, followed by functionalization with Au through magnetron sputtering for various times (30
s for the specimen imaged in (a—c)). (d) Water contact angle for ZnO NR arrays functionalized with Au for different deposition times. (e-h) Sketches
and photographs of a water droplet on the specimens, and the corresponding Au NP distribution on ZnO NRs. (i) Effect of light exposure duration
and storage in the dark on the water contact angle of ZnO-Au systems as a function of Au deposition time (30, 60 or 90 min). Reprinted with

permission from ref. 40. Copyright 2017, IOP Publishing.
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“contaminant washing”, resulting thus in the target self-
cleaning effect (see for instance Fig. 10c and d).

On a laboratory scale, PH and PCO functionalities can be
tested by simply monitoring variations of the water contact
angle on the surface of the target materials as a function of
illumination time.**®* In fact, irradiation results in a
progressive decrease of the contact angle even in the
presence of solid contaminants, whose photodegradation
induces a hydrophobic-to-hydrophilic transition. A key
parameter determining material performances is hence the
overall variation of the measured contact angle between the
(super)hydrophobic and (super)hydrophilic states, which is
required to be as fast as possible upon application of external
stimuli. In addition, the reversibility in the recovery of the
original state can be considered as an indirect fingerprint of
the system stability.

Various studies have examined the process theoretical
background,>*'°®19811%113  and it has been demonstrated
that wetting properties are directly connected with the system
nano-texture,”>**">'! whose tailoring is a powerful tool to
control and modulate such features by design. As for De-NO,
photocatalysts, the most investigated material is
TiO,, %% 113 byt an attractive alternative is offered by
nanostructures of ZnO, either as such or combined with
suitable semiconductors/metals.>®””1%%1%  An interesting
example is provided by the work of Wei et al. on ZnO NR
arrays coated with gold NPs under different conditions.*’
TEM analyses evidenced that the adopted strategy (caption
for Fig. 11) resulted in an even dispersion on ZnO of small-
sized gold NPs (5-10 nm; Fig. 11la-c). An increase in the
sputtering time enabled a parallel increase in the size of Au
NPs, and the system wettability could be tailored accordingly
(Fig. 11d-h). In fact, water droplets can penetrate only
partially into bare ZnO NR arrays, due to their much larger
dimensions in comparison to the NR size and mutual
distance. As a result, the droplets come into contact with
both ZnO NRs and trapped air, resulting in a hydrophobic
surface state (Fig. 11e). The introduction of Au NPs produces
a contact angle reduction for an Au sputtering time of 30 s,
followed by a subsequent increase (Fig. 11d). This behavior
was traced back to the presence of a hierarchical structure
with dual-scaled characteristics, i.e. large (ZnO NR arrays and
the inter-NR distance with a size of ~100 nm) and small
(surface-attached gold NPs, with a few nm size), as shown in
Fig. 11f-h. Since water droplets are much larger than Au NPs,
they exhibit an inherent contact angle, with ZnO, air and gold
at their interfaces. Longer sputtering times generated an
increase in both loading and dimensions of gold NPs, which
formed larger islands  with  irregular  shapes."’
Correspondingly, additional air gaps are introduced,
ultimately leading to a contact angle increase as a function of
Au deposition time.

Interestingly, the target systems displayed reversible
wettability upon irradiation and subsequent storage in the
dark (Fig. 11i). The water contact angle decrease upon visible
light illumination observed for all specimens was attributed

This journal is © The Royal Society of Chemistry 2023
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to the Au-induced surface plasmonic effect."” Accordingly,
electrons rapidly injected into the ZnO CB can promote the
formation of hydroxyl groups by reacting with dissolved
oxygen, leading to the generation of superoxide species,
which, in turn, can further react with water. The result is a
contact angle reduction, progressively enhanced by UV
illumination prolonged up to 60 min (Fig. 11i). The
underlying mechanism has been described as follows.*® UV
illumination results in the generation of electrons and holes
that can respectively react with lattice Zn and O to yield Zn(1)
defective sites and oxygen vacancies.?” Therefore, dissociative
chemisorption of atmospheric water is promoted, with the
formation of surface -OH groups leading to increased
hydrophilicity. Storage in the dark for a sufficiently long time
results in a contact angle reversal and a recovery of the
original hydrophobicity. In fact, after adsorption of hydroxyl
groups, the system surface becomes energetically unstable,
whereas adsorption of oxygen molecules, whose bonding with
defective sites is stronger, is thermodynamically favoured.'®
As a consequence, adsorbed -OH groups are progressively
replaced by oxygen, accounting for the return to the original
hydrophobic state.

The development of tunable dual-responsive systems with
attractive reversible wettability tuning was successfully
accomplished by the liquid-phase preparation of ZnO/CuO
nanocomposites (caption for Fig. 12).** Electron microscopy
analysis revealed that the branches of the stainless-steel
substrate (Fig. 12a) could be uniformly covered by ZnO NR
arrays, with the outermost material region characterized by
flower and urchin-like hierarchical ZnO/CuO architectures
(Fig. 12b and c). The urchin-like microspheres are composed
of assembled nano-sheets with sizes <50 nm. These
hierarchical structures, yielding an inherently high surface
roughness, can readily trap air pockets, anticipating the
occurrence of good superhydrophobic properties. Indeed, the
system  superhydrophobic-to-superhydrophilic  switching
could be reversibly triggered via thermal treatment (Fig. 12d)
and UV exposure (Fig. 12e). Notably, only 1 h of annealing at
high (300 °C) and low (150 °C) temperatures (30 min for
each) enabled the completion to complete a whole cycle,
which could be periodically reproduced with a very limited
contact angle hysteresis. Upon UV illumination (Fig. 12e),
water contact angle values underwent a gradual decrease with
time and the wettability could be switched from
superhydrophobic to hydrophilic after 11 h. The initial
superhydrophobic state could be restored upon annealing for
30 min at 150 °C. The process mechanism is analogous to
the one described for previous systems,”” and proceeds
through the surface formation of -OH groups after the initial
photocatalytic activation. The coupling of ZnO with CuO can
enhance the separation of photogenerated electrons and
holes, suppressing their recombination in comparison to the
case of bare zinc oxide.'"'> An additional contribution is
provided by the formation of defective sites, promoting the
generation of -OH groups and the resultant water contact
angle decrease. Indeed, O vacancies can be generated upon
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Reprinted with permission from ref. 43. Copyright 2019, Elsevier.

high temperature annealing, whereas sample storage in the
dark or heating at low temperature results in -OH
replacement by O atoms, generating thus the reversal to the
initial hydrophobic state. The reversible wettability of ZnO/
CuO nanocomposites, which feature also high stability and
abrasion resistance, makes them intelligent stimuli-
responsive platforms for practical end-uses.

The material PH and PCO properties can be manipulated
by combined control of the morphology and chemical
composition even for materials different from ZnO. A
representative example is provided by MnO,-based
nanosystems, grown on FTO substrates by PE-CVD.** The
systems, containing the p-MnO, polymorph, displayed a
significant morphological evolution as a function of the
growth temperature, from dendritic structures (Fig. 13a) to
elongated quasi-1D nanothorns (Fig. 13b) protruding from
the underlying substrate. These nanostructures are attractive
for photocatalytic applications, thanks to the high contact
area with the reaction medium.** In addition, the use of a
fluorinated Mn(u) molecular source favoured an even doping
of the prepared materials with fluorine, whose content could
be modulated as a function of the growth temperature
(Fig. 13c). These properties had a direct influence on the
system photo-assisted behaviour, which was characterized by
the occurrence of a hydrophobic-to-hydrophilic switching
upon illumination (Fig. 13d and e). The initial contact angle
value was progressively lower for samples grown at higher
temperatures, mainly due to the concomitant decrease in

3982 | CrystEngComm, 2023, 25, 3968-3987

fluorine content (Fig. 13c). In fact, the presence of fluorine
leads to passivation of defects and, hence, to a reduced O
vacancy content, hampering the formation of hydroxyl groups
and accounting for the higher initial hydrophobicity.**
Furthermore, the variation of water contact angle between
the initial and final states was directly dependent on the
growth temperature (Fig. 13e), and turned out to be the
highest for the specimen prepared at 100 °C. This behaviour
was traced back to the correspondingly higher F percentage,
inducing an enhanced metal centre Lewis acidity which, in
turn, favourably  affects material  photoactivity."*®
Furthermore, a higher F content produces an enhanced
defect passivation, reducing thus electron-hole
recombination.’”” Although at 400 °C a higher active area
(possibly suggesting a higher hydrophobicity) was obtained,
this phenomenon could efficiently counterbalance the above
described effects. After storage of the specimens in the dark
for 12 h at the end of PH tests, the initial surface state was
recovered, highlighting the reversibility of the observed
behaviour.

PCO performances of the target nanomaterials were tested
in the photodecomposition of methyl stearate, a model fatty
compound.”” The initial material surface state was
hydrophobic (Fig. 13f), due to the presence of the
hydrophobic overlayer, and this phenomenon was more
pronounced for systems obtained at higher growth
temperatures, corresponding to higher surface areas
enhancing, in turn, hydrophobicity.>® As already observed for

This journal is © The Royal Society of Chemistry 2023
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PH (Fig. 13e), the material PCO activity directly depended on
the growth temperature, and a higher contact angle variation
was observed for the sample grown at 100 °C. The latter
result was mainly traced back to the higher fluorine content
(see above and Fig. 13c), suppressing electron-hole
recombination  processes and  positively impacting
photocatalytic activity.** Hence, at variance with possible
initial predictions, a predominant effect of active area on

This journal is © The Royal Society of Chemistry 2023

functional behaviour, which would result in improved
performances of the 400 °C-grown sample, could be
excluded.

5. Conclusions and perspectives

In this highlight, a brief overview on the design and
development of supported first-row transition metal oxide
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nanostructures  for  sustainable  technologies  and
environmental applications was presented. In particular, the
attention was focused on green, abundant and cost-effective
systems based on Mn, Fe and Zn, with regard to end-uses
aimed at clean energy production, air purification and self-
cleaning purposes. A direct bridge between the above
applications is the possibility of benefitting from light
activation of the involved processes, as well as from the
synergistic combination of material features to attain a
widely diversifiable and improved reactivity as a function of
the specific end-use.

Through the presentation of selected representative case
studies, our intention was to provide the readers a picture on
the recent evolution of research activities in the target fields,
which in our opinion has followed the huge developments in
nanomaterial design, fabrication and characterization. Efforts
have been dedicated to a discussion of results highlighting
how combined control and modulation of
nanoarchitectonics, coupled with the development of
composite systems, have led to significant steps forward in
the engineering of multi-functional oxide-based nanosystems.
In this broad realm, key guidelines that can be extracted
from the performed research work evidence the relevant
influence of the synthesis procedure and processing
conditions on the resulting material features. Beside nano-
organization, a main role is also played by the system
chemical composition, as the controlled choice of metal/
oxide counterparts in the resulting composites directly affects
the chemical/electronic interplay between the system
constituents. The resulting functional behavior in green
hydrogen production, air purification, and self-cleaning/anti-
fogging end-uses, beyond the specific differences between
the various cases, can be thus varied over a broad range
already during material preparation, thanks to the availability
of various freedom degrees. These issues open the door to
additional progress aimed at protecting and valorizing the
natural capital towards a more sustainable society.

The above examples pinpoint the importance of
constructing functional platforms by design, and we are
confident that more functions and utilization could be
achieved in the near future by eco-friendly materials for the
targeted applications. In this regard, there are still evident
shortcomings that should be properly addressed for their full
exploitation. First, a complete and detailed correlation
between the system chemico-physical and functional
properties is still missing on a detailed rational basis, and
additional advancements cannot be based on mere “cook-
and-look” procedures. A more detailed understanding
inevitably requires the aid of advanced theoretical
calculations and thorough experimental characterization,
whose joint use is indeed a powerful tool to unravel the
molecular-level origin of material behavior. Important tools
for this are already available, and they are rapidly and
significantly evolving under our eyes. These issues are crucial
to deepen the fundamental and applied know-how on these
intriguing systems, which represent a top priority for the

3984 | CrystEngComm, 2023, 25, 3968-3987
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materials science community, and to improve their stability
and durability, an inevitable requirement to finally benefit
from their applications in actual production and real life.
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