In situ nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors†
Abstract
Zn-ion hybrid capacitors, with a large-capacity Zn anode (battery-type) integrated with a capacitive cathode, hold great potential to relieve the unsatisfactory energy-to-power ratio of aqueous supercapacitors. The research into cathode design is expected to bridge the capacity gap between the two electrodes without sacrificing the inherent power/cycling superiorities but is still in its infancy. In this work, robust O/N-decorated porous carbon cathodes were derived by the in situ calcination of conjugated polyamides, wherein the solvent-guided strategy was applied to shape the carbon nanoarchitecture for the activation of Zn storage sites. After optimizing the solvent–precursor interactions, the packed particle architecture (CDMF) ultimately exposed ample electrosorption platform up to 1656 m2 g−1, and O/N dopants (15.77 wt%) promoted interfacial Zn adsorption by lowering the energy barrier for C–O–Zn bonding. Further experimental evaluations revealed that the CO species on the robust CDMF framework tended to boost reversible chemical adsorption to form C–O–Zn bondings while maintaining durable charge transfer, which minimized capacity loss even at high rates. As a result, the aqueous CDMF//Zn capacitor achieved a large capacity of 180 mA h g−1, an ultrahigh energy density of 106.7 W h kg−1 and an excellent power output of 13.4 kW kg−1, as well as 91.1% capacity retention over 300 000 cycles. This design strategy gives an appealing insight into the subtle fabrication of high-performance carbon cathodes and highlights their applicability towards practical Zn-based energy storage in the future.
- This article is part of the themed collection: 10th Anniversary: Most popular articles