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Data-driven approach for the prediction
of mechanical properties of carbon fiber
reinforced composites†

Vade Shah, ‡ Steven Zadourian,‡ Charles Yang, Zilan Zhang and Grace X. Gu *

Fiber-reinforced composite materials are integral to aerospace, automotive, and military industries.

In manufacturing, these composites are subjected to certain curing cycles, which are known to have a

significant impact on the mechanical properties of the material. Many studies have focused on

predicting these mechanical properties of composites, but environmental conditions and curing cycles

are often not considered. In this work, supervised machine learning techniques are applied to

experimental data obtained from the National Center for Advanced Materials Performance (NCAMP) for

various unidirectional carbon fiber laminates to predict the mechanical properties of composite

materials. These techniques holistically consider the effects of environmental conditions and curing

cycles, factors frequently overlooked in analytical approaches. Results show that recurrent neural

network models can accurately predict the modulus of these materials, achieving R2 values up to 0.98.

This work establishes a statistical framework to analyze complex empirical data for advanced materials

design.

Introduction

Composites have demonstrated several advantages over tradi-
tional materials, including longevity, strength, and low weight,
and have influenced several fields such as biomedical,1 naval,2

structural,3–8 and aerospace,9,10 among many others.11–14

Carbon fiber reinforced polymers (CFRPs) are of particular
interest in aerospace applications: unlike metals, CFRPs do not
corrode and are less susceptible to fatigue cracking. Additionally,
carbon fiber yields significant weight reduction when compared
to other load-bearing materials. There exist many factors in the
design process that affect the strength of the resulting CFRP.
A common manufacturing method involves a layup process in
which individual laminae are stacked at varying angles in a
repeating pattern; selecting a certain pattern can exploit desirable
properties of both the polymer and fiber in multiple directions.
The laminae are subject to a set of curing conditions, which
include temperature, humidity, and cycle time, and these factors
can also affect the strength of the resulting composite. Post curing,
the surrounding environmental conditions also have a significant
effect on material performance; these conditions are often studied

to understand the long-term behavior of the material in varying
temperatures and humidity.

The effects of curing conditions, environmental temperature,
lamina orientation, and environmental moisture on CFRPs
have been studied extensively. Various studies demonstrate
that strength development is dependent on curing time and
temperature, though no quantitative relationship has been
established between these variables.15 In structural applications,
bond joint strength has been shown to decrease with increased
curing temperature, although ultimate strain increased with high-
temperature curing; additionally, curing CFRPs at 120 1C may not
improve their strength at room temperature, but it can signifi-
cantly increase their ultimate tensile strength at an environmental
temperature of 50 1C.16,17 Some environmental studies have
demonstrated that short-term exposure to extremely low tempera-
ture (�28 1C) does not have significant effects on the flexural
behavior of CFRPs, and others have shown increased flexural
strength and energy absorption at lower (�60 1C, �100 1C)
temperatures,18,19 which is advantageous for high-altitude avia-
tion applications. Extreme high-temperature exposure (177 1C)
yields considerable reductions in the ultimate tensile strength of
fiber-epoxy composites. A fatigue-focused study has shown
increased fatigue strength with increased temperature (125 1C),
and different layup patterns have resulted in different failure
modes in transverse and longitudinal directions; tensile and
compressive strength have been maximized along the direction
of fiber orientation.20,21 Humid environmental conditions, often
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referred to as wet conditions, also result in significant reduction
of ultimate tensile strengths, tensile shear strengths, and com-
pressive strengths; these reductions are generally attributed to the
weakening of the matrix at high moisture content.22–24 Ultimately,
the following general conclusions can be drawn from the exten-
sive literature at hand: polymer composite strength decreases
with increasing curing temperature, increasing environmental
temperature, and increasing ambient humidity, and its strength
is maximized along the direction of fiber orientation.

Given these trends, researchers have developed increasingly
accurate models over decades to predict the properties of
CFRPs. Early models, including the rule of mixtures,25 the
Reuss model,26 and the Halpin–Tsai equations27 all provide
relatively accurate estimates of ultimate strength and Young’s
modulus. While these models provide useful measures, they
often make assumptions about the material that are difficult to
achieve in practice such as homogeneity and perfect adhesion.
In recent years, computational approaches have increased in
popularity for their robustness and ability to incorporate several
factors into predictions. Studies have shown the potential of
machine learning (ML) techniques in materials design.28–34 Neural
networks are commonly used as a computational tool in ML and
have been used to predict the mechanical properties of several
materials and optimize the microstructures of materials.35–39

In this paper, supervised ML techniques are applied to
empirical data gathered from thousands of physical material
samples to predict the modulus of elasticity of novel CFRPs in
various directions. The results and methods presented in this
paper differ greatly from the existing literature due to the real-
world holistic dataset and the efficient computational models,
offering significant novel avenues for exploration. Beyond the
overhead incurred in training, predicting the properties of a
composite using the ML models presented in this paper only
requires knowledge of a small set of variables representing the
material constituents, their ordering, curing and environmental
conditions, and the direction of loading. The models explored
here are relatively computationally inexpensive and can be imple-
mented to incorporate a large subset of potential materials.
Moreover, this work explicitly demonstrates the potential for
regressive ML techniques in the composite design space.

Methods
Data collection

The following data has been collected by the National Center
for Advanced Materials Performance (NCAMP), a research
program funded by the Federal Aviation Administration that
collaborates with industry manufacturers to qualify advanced
aerospace materials. From their extensive database, four CFRPs
have been selected for analysis: Solvay MTM45-1 with 12K AS4
unidirectional carbon fiber, Solvay MTM45-1 with IM7 unidir-
ectional carbon fiber, Hexcel 8552 with 12K AS4 unidirectional
carbon fiber, and Hexcel 8552 with IM7 unidirectional carbon
fiber.40–45 Solvay MTM45-1 and Hexcel 8552 are both tough-
ened epoxy resins. Note that the four selected materials are

unique combinations of the two fibers and two resins; this
selection is exploited and discussed in the following section.
Properties of the material such as fiber type, resin type, curing
conditions, environmental conditions, and fiber orientation are
used as inputs for the models later presented.

The composite material data of interest are publicly available
on the NCAMP website.46 Just over 6,500 data points are obtained
across all four materials, and each point is described by of one
of two fibers, one of two resins, one of five environmental
conditions, one of seven curing conditions, and one of seven
general mechanical tests. Each point is also described by the
orientation of the fibers in each layer of the laminate. Fig. 1b
provides a simplified visualization of some of the features that go
into manufacturing and testing a carbon fiber specimen. The
various design parameters lead to hundreds of thousands of
potential combinations, each of which correspond to a unique
material. It is important to note that although fiber orientation is
excluded from the figure to aid visualization, it is not disregarded
in the model. Including the orientation in the dataset increases
the number of possible combinations to the millions.

Of these numerous combinations within the data set, each
requires multiple test specimens to obtain an accurate measure
of the mechanical properties in varying directions. This
orientation-dependent behavior is demonstrated in Fig. 1a,
which shows the relationship between modulus and strength.
Clusters formed by the mechanical tests reinforce the signifi-
cance of composites’ direction-dependent properties. Data on
specimens that have not been tested on both strength and
modulus are excluded in this figure. To reduce data loss and
enforce consistency, the modulus is chosen as the sole output
for all models. The abbreviations for the variables used
throughout this paper are defined in Table 1. Each environ-
mental condition is specified by a temperature and humidity
condition; CTD, for example, corresponds to �65 � 5 1F in dry
conditions. Note that ‘wet’ indicates equilibrium moisture
content. Each mechanical test follows an ASTM standard; LT,
for example, follows ASTM D3039. Each cure cycle follows an
NCAMP Process Specification (NPS); M, for example, follows
NPS 81228. The reader is referred to the material property
reports for additional information on mechanical test and cure
cycle specifications.40–45

Statistical analysis

Statistical analyses have been conducted to compare the mean
and variance of material mechanical properties between the
test environments. A common statistical experiment for such a
study is an ANOVA, which assesses the equality of means and
assumes an approximately normal distribution of data and
equal variances across test groups. Prior to conducting this
test, Levene’s test of homogeneity of variances has been con-
ducted to assess the equality of the variances across environ-
ments for a given mechanical property. For material properties
that have satisfied Levene’s test, an ANOVA has been conducted.
For material properties that have failed Levene’s test, Welch’s
ANOVA, which does not rely upon an equal variance assumption,
has been conducted as an alternative to an ANOVA.
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ANOVA and Welch’s ANOVA are omnibus tests; they do not
indicate which groups differ the most from the others, but
instead show whether there exists a statistically significant
difference between the means of test groups. Thus, for material
properties that have yielded statistically significant results from
the omnibus test, a post hoc test has been conducted to
determine the test group (namely, the environment) that differs
most from the others. For material properties that have satis-
fied Levene’s test, Tukey’s honestly significant difference (HSD)
test has been conducted; for material properties that have not
satisfied Levene’s test, a Tamhane T multi comparison test has
been conducted as an alternative post hoc test. All tests have
been conducted with p = 0.01.

Model development

The NCAMP data provide several attributes for each mechanical
test and material. To consolidate the dataset and ensure

uniformity, a certain subset of features has been selected as
model inputs; these include resin, fiber, cure cycle, environment,
mechanical test, and laminate orientation. Most of these inputs
are one-hot encoded variables; from the one-hot encoded data
matrix, the correlation matrix has been generated to gain a better
understanding of the relationships between these variables. These
relationships are summarized in Fig. 2. More detailed correlation
heatmaps are available in the ESI† (Fig. S1 and S2). As shown,
modulus values correlate most strongly with mechanical tests,
closely followed by laminate orientations. There also exist small
correlations between modulus and resin, as well as between
modulus and environment. Thus, these correlations justify the
chosen inputs and model types.

This work studies the use of four ML models: ridge regres-
sion, random forests, a multi-layer perceptron (MLP) neural
network, and a bimodal recurrent neural network. All inputs to
the ridge regression, random forest, and neural network
models are one-hot encoded discrete variables. For the bimodal
model, all inputs are one-hot encoded except for laminate
orientation, which is represented as an array of normalized
values. Each entry in the array corresponds to the fiber angle
orientation of that layer of the laminate. The arrays are of
length 24, which is the maximum number of layers any sample
in the dataset has; these arrays are front padded with a �1 for
materials that have less than 24 layers to create uniform arrays
for the LSTM branch of the bimodal model. The sole output of
all models is the modulus.

Linear regression is generally used as a benchmark to
compare the performance of other ML models. Due to the
nature of our data splits, a regularization term is desired to
desensitize trained models to predict similar but unseen mate-
rial properties without overfitting. Least absolute shrinkage
and selection operator (LASSO) is not desirable as it could

Table 1 Definitions of acronyms in NCAMP dataset

Acronym Definition

CTD Cold temperature dry (�65 � 5 1F, dry)
RTD Room temperature dry (70 � 10 1F, dry)
ETD Elevated temperature dry (200 � 5 1F, dry)
ETW Elevated temperature wet (200 � 5 1F, wet)
ETW2 Elevated temperature wet 2 (250 � 5 1F, wet)
LT Longitudinal tension (ASTM D3039)
LC Longitudinal compression (ASTM D6641)
TT Transverse tension (ASTM D3039)
TC Transverse compression (ASTM D6641)
IPS In-plane shear (ASTM D3518)
UNC [#] Unnotched compression [#]
UNT [#] Unnotched tension [#]
M [#] Cure cycle M [#]
MH [#] Cure cycle MH [#]
LH [#] Cure cycle LH [#]

Fig. 1 Exploratory data analysis. (a) Maximum strain scatter plots reveal direction-dependent properties of carbon fiber composites. Box plots visualize
the distributions of the properties of each mechanical test group in one dimension. Note that the IPS strength data is unavailable, so it is not shown.
(b) Sankey diagram illustrates the count of different combinations of carbon fiber specimens that have been collected. It is important to note that the true
design space is significantly larger than what is displayed in the figure, as fiber orientation has been removed from the figure for simplicity and size.
Mechanical test variations have also been grouped for visualization purposes.
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disregard critical features, so ridge regression is chosen as a
suitable alternative. Due to the discrete nature of our dataset,
decision trees are potentially a simple and efficient solution;
however, they often have high variance and low bias on training
data. Random forest models accommodate for this bias and
variance tradeoff by building hundreds of decision trees and
taking the weighted average across all of them, so random
forest models are utilized in this work. Ridge regression
and random forest models have all been trained, tested and
compared using the Python module scikit-learn.47

Artificial neural networks are powerful functional approxi-
mators that have shown tremendous success in several applica-
tions and are thus also studied in this work. Finally, the
bimodal neural network consists of a standard neural network
and a recurrent neural network. Recurrent neural networks
(RNNs) are a type of artificial neural network that have shown
significant success in temporal settings, including text predic-
tion, speech recognition, and translation, where individual
units, such as letters or words, must be interpreted in the
context of those preceding and succeeding them. Long short-
term memory (LSTM) is an RNN-based architecture that over-
comes some of the disadvantages of traditional RNN
implementations.48 Given the success of LSTM models in other
ordering-dependent applications,49,50 LSTMs are used to model
the fiber orientations of each layer in a laminate. The laminate
orientation array is passed into the LSTM component. The
output from the LSTM branch is concatenated with the one-
hot encoded variable input and passed into an MLP network.
All neural network models have been created, trained and
tested using TensorFlow Keras functional API.51 The neural
network model contains two dense layers with batch normali-
zations and dropout layers. A similar construction is used for

the bimodal model, with the exception that the laminate
orientation first passes through an LSTM layer, as depicted in
Fig. 3.

With the collected data, two different data splits have been
applied. Given a set of four similar materials, the first split
leaves three materials for training and the last for training,
following an approximate 3 : 1 test-train split. For example, AS4
MTM45-1 would be kept for testing, and IM7 MTM45-1, IM7
Hexcel 8552, and AS4 Hexcel 8552 would be trained on. The
second split leaves two dissimilar materials with unique fiber-
resin combinations for training and the remaining two for
testing, following an approximate 2 : 2 test-train split. For
example, AS4 Hexcel 8552 and IM7 MTM45-1 would be kept
for testing, and IM7 Hexcel 8552 and AS4 MTM45-1 would be
trained on. This data split is different from a traditional 70 : 30
test-train split, as an entire material is left out for testing as
opposed to a randomly selected set of data. For each split, the
material that is left out shares similar features with the training
data but in different combinations. This situation simulates the
prediction of properties for an unseen but similar material for
potential new designs. Additionally, it is important to note that
several high-precision tests are available for each material
combination in the dataset. Thus, a randomly shuffled test-
train split would not assess the ability of the model to predict
new designs, as any testing point would likely have several
nearly identical representatives in the training dataset.

With the data encoded and split, all models and their
respective parameters are cross-validated with 3 folds on the
training data using grid search across the hyperparameters.
The regularization strength parameter has been searched in the
range from 0.5 to 6.5 with increments of 0.25. The random
forest depth parameter and the number of estimators have

Fig. 2 Correlation between input variables and modulus. The correlation plot reveals the correlation between each input variable and modulus.
Significantly small correlations have been filtered out.
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been searched in the ranges from 11 to 14 and 300 to 600,
respectively. Regarding the deep learning models, both the
standard neural network and bimodal model have the same
architectures except for the initial LSTM layer that differenti-
ates the bimodal model. Each of the deep learning models
consists of two repeating blocks of dense layers with leaky
ReLU52 activation functions, dropout,53 and batch normaliza-
tion layers. The number of nodes in each layer and the Adam54

optimizer learning rate have been searched in the ranges from
80 to 150 and 0.0001 to 0.01, respectively. The dropout layer
value has been searched across the values of 0.05, 0.1, and 0.15.
Lastly, the bimodal model has an additional LSTM layer as the
input; for this model, the number of LSTM units have been
searched in the range from 1 to 3. Both the standard neural net
and the bimodal model have been trained for a maximum of
50 epochs with early stopping criteria set with a patience of 3.
The final set of hyperparameters that have been used are
provided in the ESI.†

Results and discussion
Statistical analysis results

After conducting statistical analyses, the following results are
obtained. For most mechanical tests and materials, the null
hypothesis of equal variance for Levene’s test is failed to be

rejected. This indicates that generally, testing environmental
conditions do not have a statistically significant effect on the
variance of mechanical properties; all of the environments
provide similarly consistent results. However, for most mechan-
ical tests and materials, the null hypothesis of equal means
for the omnibus test is generally rejected. This indicates that
generally, testing environmental conditions have a statistically
significant effect on the mean values of mechanical properties;
certain environments yield stronger and weaker materials.

The results of Levene’s test can be attributed to the high-
quality nature of the data. These samples have been developed
and tested in highly controlled environments, and thus mini-
mal variation in modulus values is expected across all environ-
ments. The results of the omnibus tests are explained by the
results obtained from correlation analysis. As shown in Fig. 2,
there is a small correlation between modulus and environmen-
tal conditions. Causally, this is a result of the fact that tem-
perature and humidity affect the elastic modulus of the resin,
and thus play a significant role in its macroscopic properties. It
is also worth noting that Levene’s test is more often failed for
properties of materials manufactured with the MTM45-1 resin
than it is for properties of materials manufactured with
the Hexcel 8552 resin. This suggests that Hexcel 8552 demon-
strates more consistent behavior across temperatures, whereas
MTM45-1 is more likely to vary.

For materials manufactured with Hexcel 8552 as the con-
stituent resin, a statistically significant difference is observed
between ETW, RTD, and CTD environments; additionally,
average modulus values decrease with temperature for all
properties except tensile and compressive longitudinal modu-
lus. For materials manufactured with MTM45-1 as the consti-
tuent resin, a statistically significant difference is generally
observed between ETW2, ETW, RTD, and CTD environments;
again, average modulus values decrease with temperature for
all properties except longitudinal and unnotched properties.
An example of this trend is shown in Fig. 4.

The relationship between environmental conditions and
modulus is explained by the direct relationships between
humidity and modulus and temperature and modulus. CTD,
a cold, dry environment, yields high modulus values; RTD,
a room temperature, dry environment, yields lower modulus
values; ETW, a warm, wet environment, yields the lowest
modulus values. Note, however, that the overall decreased
modulus is attributed to the resin, not the fiber; this explains
the observation that average modulus values decrease with
temperature for all properties except tensile and compres-
sive longitudinal modulus. Longitudinal modulus is a fiber-
dominated property, whereas the modulus in the remaining
directions is a matrix-dominated property. Thus, a decrease in
modulus is observed in all directions except for longitudinal as
temperature increases.

Model results

After models are trained, cross-validated and tested, the follow-
ing results are obtained. Fig. 5 visualizes the training and
testing results across all models using the 3 : 1 data split with

Fig. 3 Bimodal recurrent neural network model. yi represents the fiber
orientation angle of the ith layer of the material. The variables x1 to x5

represent the five variables listed in the light grey box. The circles con-
nected by lines represent a standard MLP network. The top branch depicts
how the fiber orientation is input to the LSTM, and the middle branch
depicts how the remaining one-hot encoded variables are input to the first
MLP network. The outputs of these separate branches are then concate-
nated and passed into a second MLP network to produce a property value.
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IM7 MTM45-1 as the material left for testing. Additional
visualizations for other splits are available in the ESI†
(Fig. S3–S6). One critical observation is the striation of results
across models within individual mechanical test groups, which
can be attributed to the categorical nature of the input data.
In turn, providing any of the models’ multiple inputs with the
exact same set of manufacturing conditions will yield similar
outputs. This contrasts with the nature of the actual experi-
mental data, where similar manufacturing conditions will yield
slightly different results due to material imperfections, testing
inconsistencies, and other stochastic influences. Additionally,
there are bands within each of the test groups, each of which
corresponds to different environmental conditions. This
indicates that environments are either overly weighted in the
model, or that the other variables are not weighted heavily
enough to dissipate the banding behavior.

When discussing the influence of each input on the results
of the model, it is important to interpret these results with
the context of the correlation analysis presented in Fig. 2.
The mechanical test variable, which dictates the direction and
type of loading, displays the greatest correlation with modulus,
followed closely by fiber orientation in certain directions; the
environmental condition variable displays a low correlation
with modulus. Mechanically, this is expected, as the elastic
modulus of the material is highly dependent upon the align-
ment between fiber orientation and the loading direction,
whereas environmental conditions contribute minimal, yet
non-negligible, perturbations to the final modulus value. Given
that the mechanical test and fiber orientation variables corre-
late with modulus far more than the environmental condition
variable, it is then of considerable interest that the aforemen-
tioned banding behavior occurs along the lines of environmental
condition. This behavior is attributed to the fact that while nearly
all the materials are tested in all the studied environmental
conditions, most materials are only constructed using a limited

set of fiber orientation profiles, and the fiber orientation variable
is thus interpreted by the models as an indicator of the
material type.

Four different models are trained and tested on six data
splits, totaling twenty-four models. The average R2 and RMSE
values across all models and data splits are 0.992 and
4.222 GPa, respectively, for the training data. The average R2

and RMSE values are 0.934 and 12.103 GPa, respectively, for the
testing data. For the 3 : 1 data split, among the four models,
the bimodal model yields the most accurate results, with
average testing R2 and RMSE values of 0.953 and 10.293 GPa,
respectively, whereas the standard neural network yields
the least accurate results, with average R2 and RMSE values of
0.925 and 12.940 GPa, respectively. For the 2 : 2 data split,
among the four models, the bimodal model yields the most
accurate results, with average testing R2 and RMSE values of
0.949 and 10.919 GPa, respectively, whereas the standard
neural network yields the least accurate results, with average
R2 and RMSE values of 0.907 and 14.737 GPa, respectively.
As shown in Table 2, on average, the bimodal model outper-
forms the other models across all data splits; however, for
certain splits, the random forest outperforms the bimodal
model. The standard neural network also outperforms the
bimodal model for one data split. The results of the bimodal
model across various data splits are visualized in Fig. 6. The
results of the bimodal model and the standard neural network
visualized side-by-side are available in the ESI† (Fig. S7).

All models are capable of predicting the modulus of unseen
materials considering the relatively minute difference between
R2 and RMSE values between testing and training datasets.
Moreover, the models perform well across both types of test-
train splits, implying that even with sparse training data, the
models continue to demonstrate their generalizability. With a
higher R2 coefficient and lower RMSE on average, the bimodal
model outperforms the rest, likely because of the continuous
nature of the laminate orientation input. This suggests that the
LSTM successfully interprets various features of the laminate
input, including the number of layers, the fiber orientation of
each layer, and most importantly, the ordering of these layers,
properties that were not represented by the one-hot encoded
input provided to other models. However, it is important to
note that this model did not significantly outperform the
others, suggesting that the less computationally expensive
models perform comparably well.

In the future, the benefits of machine learning in composite
design can be extended to the prediction of other material
properties, such as strength and Poisson’s ratio. Additionally,
other inputs to the model can be represented in other ways to
increase generalizability. Cure cycles can also be modeled as
sequential variables of temperature and pressure, and thus can
be similarly provided as an input to an additional LSTM
branch. Finally, in this work, data is obtained for a limited
number of materials; the NCAMP database encompasses dozens
of other CFRPs, and other manufacturers may provide similar
information. As opposed to artificially randomized computer-
generated data, experimental data describes the inherent

Fig. 4 Modulus distribution across environmental conditions. Box and
whisker plot illustrating the difference in longitudinal tensile modulus
between various environmental conditions for Hexcel 8552 IM7 unitape.
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Fig. 5 Training and testing results for all models. Modulus predicted by model is plotted against true modulus value across all models. For these data, the
IM7 Hexcel 8552 material has been left for testing.

Table 2 R2 and RMSE values for modulus across all models and data splits. RMSE values are computed across all mechanical tests and are given in
gigapascals. The best testing metrics for each data split are shown in bold

RF train RF test Ridge train Ridge test NN train NN test RNN train RNN test

Without IM7 MTM45-1 RMSE 3.112 8.200 5.786 14.344 4.210 17.310 5.828 9.558
R2 0.996 0.975 0.986 0.925 0.992 0.895 0.985 0.968

Without AS4 MTM45-1 RMSE 2.959 6.192 5.665 12.484 4.207 12.241 5.705 11.667
R2 0.996 0.982 0.987 0.929 0.993 0.932 0.987 0.938

Without IM7 Hexcel 8552 RMSE 2.858 15.870 4.596 12.572 3.824 10.696 3.474 11.200
R2 0.996 0.915 0.990 0.947 0.993 0.962 0.994 0.958

Without AS4 Hexcel 8552 RMSE 3.404 14.074 4.981 10.617 5.297 11.511 4.003 8.748
R2 0.996 0.870 0.991 0.926 0.989 0.913 0.994 0.950

Without IM7 MTM45-1 and AS4 Hexcel 8552 RMSE 2.676 13.547 3.363 14.715 5.047 12.969 5.397 9.774
R2 0.997 0.928 0.995 0.915 0.990 0.922 0.989 0.955

Without AS4 MTM45-1 and IM7 Hexcel 8552 RMSE 3.192 10.911 4.368 12.706 3.943 16.505 3.426 12.065
R2 0.996 0.944 0.993 0.925 0.993 0.893 0.995 0.943

Average across all data splits RMSE 3.033 11.466 4.793 12.906 4.421 13.539 4.639 10.502
R2 0.996 0.936 0.990 0.928 0.992 0.919 0.990 0.952
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stochasticity of the manufacturing process; though mean values
are predicted in this work, real-world data can be exploited to
predict a more useful distribution of values instead.

Conclusions

The following conclusions can be drawn from the results of this
work. Firstly, from the statistical explorations, there is no
statistically significant difference between the variances of
the moduli across environments, but there is a statistically
significant difference between their means, implying that the
increased modulus in certain environments can be exploited
without increasing its variability. For fiber-dominated properties,
namely those in the longitudinal direction, warmer environ-
mental conditions yield higher modulus values, whereas for
matrix-dominated properties, cooler environmental conditions
yield higher modulus values. The results of the ML models yield
the following conclusions. Firstly, all the models yield highly
accurate results, demonstrating significant potential for regressive
analysis of CFRPs using ML techniques; nevertheless, these
models have room for improvement, especially regarding distri-
bution prediction. Secondly, the highly accurate results across
both unconventional data splits speak strongly to the models’
ability to predict unseen material combinations, which has several
implications for accelerating material design. Finally, these results
demonstrate the success of recurrent neural network architectures
in modeling the features and ordering of lamina in laminate
composites. Ultimately, advancing these models will reduce the
number of experiments that need to be conducted to achieve

desired properties, paving the way for a faster analysis of new
laminate composite designs.
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