Emerging investigators series: a critical review of decision support systems for water treatment: making the case for incorporating climate change and climate extremes
Abstract
Water treatment plants (WTPs) are tasked with providing safe potable water to consumers. However, WTPs face numerous potential obstacles, including changes in source water quality and quantity, financial burdens related to operations and upgrades, and stringent water quality regulations. Moreover, these challenges may be exacerbated by climate change in the form of long-term climatic perturbations and the increasing frequency and intensity of extreme weather events. To help WTPs overcome these issues, decision support systems (DSSs), which are used to aid and enhance the quality and consistency of decision-making, have been developed. This paper reviews the scientific literature on the development and application of DSSs for water treatment, including physically-based models, statistical models, and artificial intelligence techniques, and suggests future directions in the field. We first set the context of how water quality is impacted by climate change and extreme weather events. We then provide a comprehensive review of DSSs and conclude by offering a series of recommendations for future DSS efforts for WTPs, suggesting that these tools should (1) more accurately reflect the practical needs of WTPs, (2) represent the tradeoffs between the multiple competing objectives inherent to water treatment, (3) explicitly handle uncertainty to better inform decision makers, (4) incorporate nonstationarity, especially with regard to extreme weather events and climate change for long-term planning, and (5) use standardized terminology to accelerate the dissemination of knowledge in the field.
- This article is part of the themed collection: Emerging Investigator Series