Exploring the temperature stability of CRISPR-Cas12b using molecular dynamics simulations
Abstract
The thermal stability of CRISPR-Cas nucleases is a critical factor for their successful application in ‘one-pot’ diagnostic assays that utilize high-temperature isothermal amplification. To understand the atomistic mechanism of stabilization in a previously engineered variant of the thermostable BrCas12b protein, we performed all-atom molecular dynamics (MD) simulations on the wild-type and mutant forms of apo BrCas12b. High-temperature simulations reveal a small structural change along with greater flexibility in the PAM-interacting domain of the mutant BrCas12b, with marginal structural and flexibility changes in the other mutated domains. Comparative essential dynamics analysis between the wild-type and mutant BrCas12b at both ambient and elevated temperatures provides insights into the stabilizing effects of the mutations. Our findings offer comprehensive insights into the important protein motions induced by these mutations. These results provide insights into thermal stability mechanisms in BrCas12b that may inform the future design of CRISPR-based tools.
- This article is part of the themed collection: MSDE Open Access Spotlight

Please wait while we load your content...