Enlightening the future: AIEgen-integrated phthalocyanines and subphthalocyanines for next-generation functional materials
Abstract
Phthalocyanines and subphthalocyanines have emerged as highly adaptable molecular platforms with diverse applications, predominantly due to their tunable photophysical properties achieved through the variation in axial and peripheral substituents and central metal atoms. Despite these benefits, their broader application has been hindered by their intrinsic hydrophobicity and strong aggregation in aqueous environments, leading to aggregation-caused quenching (ACQ) and poor photoluminescence performance. Recent advances have demonstrated that integrating aggregation-induced emission luminogens (AIEgens), such as tetraphenylethene and triphenylamine, into phthalocyanine and subphthalocyanine frameworks can efficiently overcome ACQ. This strategy restricts intramolecular motions, converting traditional ACQ-type systems into AIE-active materials with significantly improved emission. Moreover, the unique cone-shaped, π-conjugated architecture of subphthalocyanines enables efficient fluorescence resonance energy transfer when combined with AIE-active groups, further enhancing their photophysical properties. In this perspective, we highlight the recent progress in the development of AIEgen-integrated phthalocyanines and subphthalocyanines, discuss their structure–activity relationships, and explore their potential for advanced applications. To our knowledge, this is the first review to focus on the growing importance and future opportunities of integrating AIEgens with phthalocyanine and subphthalocyanine systems.
- This article is part of the themed collections: Journal of Materials Chemistry C HOT Papers and Journal of Materials Chemistry C Recent Review Articles

Please wait while we load your content...