Modulating organic functional groups in stimuli-responsive luminescent antimony chlorides†
Abstract
Stimuli-responsive inorganic–organic hybrid metal halides (IOMHs) have shown great potential in sensing, information encryption and anti-counterfeiting, etc. However, the stimuli-responsive behavior based on the regulation of the functional groups in organic species is still blank in IOMHs. Herein, three zero-dimensional (0-D) antimony-based IOMHs with different functional groups in the organic cations are reported, namely [AOEMIm]3SbCl6 (1, AOEMIm = 1-acetoxyethyl-3 methylimidazolium), [HOOCMMIm]3SbCl6·3(OOCMMIm) (2, HOOCMMIm = 1-carboxymethyl-3-methylimidazolium) and [HOOCMMIm]3SbCl6 (3). Photophysical characterizations show that 1, 2 and 3 exhibit typical self-trapped exciton triplet broadband emission, peaking at 610, 510 and 525 nm under excitation of 365 nm, 375 nm and 345 nm, respectively. Under the H2O stimulation, the organic groups in the crystal structures undergo a mutual transformation, that is, from acetoxyethyl or carboxyl to a mixture of carboxyl and deprotonated carboxyl. Accordingly, the organic group switching is accompanied by a solid–solid transformation from 1 or 2 to 3 crystals. The intrinsic mechanism for the phase transition is expounded as well. Due to the obvious luminescence change from yellow-green emission (3) to green emission (2), 3 is further applied in the detection of trace water in organic solvents. The water detection limit in tetrahydrofuran (THF) is as low as 0.3% v/v. This study provides a new avenue for the construction of stimuli-responsive IOMHs.
- This article is part of the themed collection: Journal of Materials Chemistry C Emerging Investigators 2024