Enhancing CO2 Electroreduction with Decamethylcucurbit[5]uril-Alkaline Earth Metal Modified Pd Nanoparticles
Abstract
Electrochemical CO2 reduction reaction (CO2RR) offers a promising pathway to convert CO2 into value-added chemicals, with CO production being a primary target. While the conversion of CO2 to CO hinges on the delicate balance of *COOH and *CO binding energies, this study introduces a series of Pd-based hybrid catalysts, Me10CB[5]-M/Pd (M=Sr, Ca, Cd), to address this challenge. The catalysts were synthesized via thermal treatment of supramolecular precursors formed by Me10CB[5], M2+, and [PdCl4]2- ions. Notably, Me10CB[5]-Sr/Pd exhibited exceptional CO selectivity (91.3% FECO at -0.7 V vs. RHE) and long-term stability. The incorporation of Me10CB[5]-Sr into the Pd catalyst system enhanced CO2 adsorption, modulated the electronic structure of Pd, and optimized the adsorption/desorption energies of critical intermediates, ultimately leading to superior CO2RR performance. This work underscores the potential of supramolecular engineering in designing high-performance electrocatalysts for CO2 conversion.
- This article is part of the themed collection: 2024 Inorganic Chemistry Frontiers HOT articles