Effect of adenosine monophosphate on visible-light driven nicotinamide mononucleotide reduction in a system of water-soluble zinc porphyrin and colloidal rhodium nanoparticles†
Abstract
NAD+ analogues, nicotinamide and nicotinamide mononucleotide (NMN+), were used to clarify the mechanism of visible-light driven selective NAD+ reduction to 1,4-NADH in a system of water soluble zinc tetraphenylporphyrin tetrasulfonate and colloidal rhodium nanoparticles dispersed with polyvinylpyrrolidone (Rh-PVP). As a result, it was found that nicotinamide was not reduced but NMN+ was reduced to the 1,4-form selectivity, the same as NAD+. In addition, the visible-light driven selective NMN+ reduction was found to be enhanced by the addition of the adenosine monophosphate part of the NAD+ structure.
- This article is part of the themed collection: New Journal of Chemistry HOT Articles