[W10O32]4−-based POMOFs with different nuclear cobalt clusters for photoreduction of CO2 to produce syngas†
Abstract
The CO2 emissions from flue gases in traditional electricity generation and industrial sectors account for the main source of global emissions. The direct conversion of CO2 in flue gases into value-added carbon production is a low-cost and simple process to realize a carbon neutral cycle, yet the development of an efficient catalyst to treat the CO2 in flue gases is still in its infancy. Here, we present two polyoxometalate-based metal organic frameworks (POMOFs) with [W10O32]4− as the connecting node, named Co2(W10O32)(BIA)4(CH3CN)4 (compound 1) and Co4(W10O32)(INA)6(CH3CN)4(TBA)2 (compound 2), as catalysts for the photoreduction of CO2 in exhaust gases. Under a pure CO2 atmosphere, syngas is the main product and the yield of compound 1 is 72.7 μmol h−1, which is ∼40% higher than that of compound 2 (54.2 μmol h−1). Notably, the yield of compound 1 reaches 42.7 μmol h−1 with 15% CO2 in the flue gas, which indicates that the catalyst can not only overcome the low CO2 concentration but also tolerate the harsh gas composition in the flue gas. In addition, density functional theory (DFT) calculations show that the charge distribution and steric hindrance of compound 1 were conducive to the reduction reaction.
- This article is part of the themed collection: 1D/2D materials for energy, medicine, and devices