Bright lead-free Cs3Cu2I5 perovskite scintillators for thermal neutron detection†
Abstract
All-inorganic lead-free perovskite scintillators have attracted wide applications in X-ray imaging recently due to their low cost, high resolution, and environmental friendliness. However, their potential application in thermal neutron detection has yet to be thoroughly explored. In this article, the properties of all-inorganic perovskite Cs3Cu2I5 scintillators for thermal neutron detection have been investigated. A simple synthesis process has been applied to produce Cs3Cu2I5 scintillators. The as-prepared Cs3Cu2I5 crystals exhibit intense blue emission with a photoluminescence quantum yield (PLQY) of 60.3%. A composite of 6LiF, Cs3Cu2I5, and poly(methyl methacrylate) (PMMA) has been utilized for thermal neutron detection, which has a light yield of about 28 000 photons per thermal neutron, four times that of a commercial 6Li-glass (GS20) scintillator (7000 photons per thermal neutron). Effective neutron-gamma-pulse-discrimination has been achieved using a network-dynamics digital filter, effectively separating thermal neutrons from gamma events. Our composite scintillators have a high thermal neutron absorption efficiency of about 60%. In addition, Cs3Cu2I5 crystals are more sensitive to X-ray irradiation compared to commercial Na-doped CsI scintillators. Our work provides a new strategy for large-scale perovskite-based thermal neutron detection and imaging.
- This article is part of the themed collection: Popular Advances