Enhanced microbial production of protocatechuate from engineered sorghum using an integrated feedstock-to-product conversion technology
Abstract
Building a stronger bioeconomy requires production capabilities that are largely generated through microbial genetic engineering. Plant feedstocks can additionally be genetically engineered to generate desirable feedstock traits and provide precursors for direct microbial conversion into desired products. The oleaginous yeast Rhodosporidium toruloides is a promising organism for this type of conversion as it can grow on a wide range of deconstructed biomass and consume a variety of carbon sources. Here, we leveraged R. toruloides native p-coumaric acid consumption pathway to accumulate protocatechuate (PCA) from 4-hydroxybenzoate (4HBA) released from a sorghum feedstock line genetically engineered to overproduce 4HBA. We did so by generating and evaluating an R. toruloides strain that accumulates PCA, RSΔ12623. We then show that at two scales a cholinium lysinate pretreatment with enzymatic saccharification successfully extracts 95% of the 4HBA from the engineered sorghum biomass while producing deconstructed lignin that can be more efficiently depolymerized in a subsequent thermochemical reaction. We also demonstrate that strain RSΔ12623 can convert more than 95% of 4HBA to PCA while consuming >95% of the glucose and >80% of the xylose present in sorghum hydrolysates. Finally, to evaluate the scalability of such fermentations, we conducted the conversion of 4HBA to PCA in a 2 L bioreactor under controlled conditions. This work demonstrates the potential of purposefully producing aromatic precursors in planta that can be liberated during biomass deconstruction for direct microbial conversion to desirable bioproducts.
- This article is part of the themed collection: Celebrating the 70th Birthday and Achievements of David Lynn