2-Dimensional layered molybdenum disulfide nanosheets and CTAB-assisted molybdenum disulfide nanoflower for high performance supercapacitor application
Abstract
In this study, the supercapacitor performance of the hydrothermal synthesized molybdenum disulfide (MoS2) nanosheets and the cetyltrimethylammonium bromide (CTAB)-assisted MoS2 nanoflower morphology have been investigated. The as-synthesized MoS2 nanoflower and nanosheet morphology structures were investigated via field emission scanning electron microscopy (FESEM), and the internal microstructure was examined via high resolution-transmission electron microscopy (HR-TEM) technique. The Fourier transform infrared (FT-IR) spectra were obtained to identify the chemical interaction and the functional groups present in the material. The shifting of the binding energy, oxidation states, and elemental identification were conducted by X-ray photon spectroscopy (XPS). The MoS2 nanoflower possesses surface defects, which produce numerous active sites. The MoS2 nanoflower and nanosheet electrodes demonstrate the high specific capacitance (Csp) values of 516 F g−1 and 438 F g−1, respectively, at a current density of 1 A g−1. However, the MoS2 nanoflower shows high Csp due to the large surface area with active edges, making them store more energy in the electrode.
- This article is part of the themed collection: Popular Advances