Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching†
Abstract
Electromagnetic pollution often interferes with the normal use of sophisticated electric devices leading to the necessity of developing electromagnetic wave absorbers with light weight and strong absorption ability. Herein, we synthesized two-dimensional magnetized MXene hybrids by electrostatic assembly of negatively charged few-layered Ti3C2Tx (MXene) with positively charged hollow Fe3O4 nanoparticles (HFO). The few-layered MXene was obtained by etching Ti3AlC2via a modified LiF–HCl method followed by a sonication process, while HFO was fabricated by a facile hydrothermal process. The MXene/HFO hybrids were light weight and achieved a high EM wave absorption performance (RLmin of −63.7 dB at a thin thickness of 1.56 mm). Moreover, the strong EM wave attenuation resulted from the synergistic effect arising from dielectric loss, magnetic loss, interface polarization and improved impedance matching. Therefore, the as-prepared magnetized MXene hybrids are expected to be candidates for high performance electromagnetic microwave absorbers.
- This article is part of the themed collections: Journal of Materials Chemistry A Lunar New Year collection 2022 and 2021 Journal of Materials Chemistry A most popular articles