Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts†
Abstract
Searching for highly efficient and cost-effective bifunctional electrocatalysts for the oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), which can be applied to water splitting, fuel cells and metal–air batteries, is critical for developing clean and renewable energies. Yet it remains a great challenge. By means of first-principles calculations, we have studied the OER, ORR and HER catalytic activity of Mo2B2 MBene-supported single-atom catalysts (SACs) by embedding a series of transition metal atoms in the Mo vacancy (TM@Mo2B2, TM = Ti, V, Cr, Mn, Fe, Co, Ni and Cu) as electrocatalysts. All TM@Mo2B2 SACs show excellent metallic conductivity, which would be favorable for the charge transfer in electrocatalytic reactions. Importantly, Ni@Mo2B2 can be used as a HER/OER bifunctional electrocatalyst with a lower |ΔGH| (−0.09 eV) for the HER under 1/4H coverage and a lower overpotential (ηOER = 0.52 V) than that of IrO2 (ηOER = 0.56 V) for the OER, while Cu@Mo2B2 can be used as an OER/ORR bifunctional electrocatalyst with a lower overpotential (ηOER = 0.31 V) than that of IrO2 (ηOER = 0.56 V) and RuO2 (ηOER = 0.42 V) for the OER and a lower overpotential of 0.34 V than that of Pt (ηORR = 0.45 V) for the ORR, for both of which the transition metal atoms serve as the active sites. This work could open up an avenue for the development of non-noble-metal-based bifunctional MBene electrocatalysts.
- This article is part of the themed collections: Editor’s Choice 2023: Advancing electrocatalysts for a sustainable future., Journal of Materials Chemistry A Lunar New Year collection 2022 and 2021 Journal of Materials Chemistry A most popular articles