Electrochemical product engineering towards sustainable recovery and manufacturing of critical metals
Abstract
Critical metal products play an irreplaceable role in all aspects of modern society, however, uncertain supply risk pushed their sustainable recycling and manufacturing into central focus. Compared to traditional metallurgical processes, novel electrochemical technology has been well demonstrated to be a high-efficiency, environmentally friendly, and cost-effective process for critical metal recovery and manufacturing, which is in line with the concept of green chemistry. Originating from the discipline of product engineering, the concept of electrochemical product engineering was established towards sustainable recovery and green manufacturing of critical metals. For this purpose, a range of electrochemical strategies, including electrochemical deposition, cyclone electrowinning, supergravity-enhanced electrodeposition, molten-salt electrodeposition, ionic liquid electrodeposition, and electrodeposition-redox replacement, were successfully developed and systematically discussed. A detailed analytical discussion on various types of metal products/materials obtained via the implementation of electrochemical product engineering, including pure metals, alloys, powders, thin films, and nanomaterials as well as the corresponding applications, has also been presented. On this basis, the principles/directions for future optimization of electrochemical product engineering are proposed. Therefore, to better map the challenges and opportunities associated with the development of electrochemical metal production, key directions are recommended to tackle existing puzzles in the field of critical metal recovery and manufacturing, and promote the sustainability of future material cycling.
- This article is part of the themed collection: Green Chemistry Reviews