Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

As an emerging photovoltaic technology, dye-sensitized solar cells (DSSCs) have attracted a great deal of academic and industrial interest due to their reasonably high power conversion efficiency, low material cost and facile fabrication process. Metal-free organic dyes, as one of the key components of DSSCs, play a pivotal role in light harvesting and electron injection. Among the various species of organic dyes, easily tunable 10H-phenothiazine-based dyes hold a large proportion. The electron-rich nitrogen and sulfur atoms render 10H-phenothiazine a stronger donor character than other amines, even better than triphenylamine, tetrahydroquinoline, carbazole and iminodibenzyl. On the other hand, the unique non-planar butterfly conformation of the 10H-phenothiazine ring can sufficiently suppress molecular aggregation and the formation of excimers. The positions N-10, C-3 and C-7 of the 10H-phenothiazine ring system can easily be furnished with electron-donating or electron-withdrawing groups. Thus, the structural features of 10H-phenothiazine-based dyes guarantee the fabrication of efficient DSSCs. Some 10H-phenothiazine-based dyes show high photovoltaic performance, even better than the commercial ruthenium complex (N719). This paper reviews the recent significant scientific progress in 10H-phenothiazine-based DSSCs and focuses especially on the relationship between the molecular structure and the photoelectric conversion properties.

Graphical abstract: Phenothiazine-based dyes for efficient dye-sensitized solar cells

Page: ^ Top