Controlling and predicting droplet size of nanoemulsions: scaling relations with experimental validation†
Abstract
Nanoemulsions possess powerful nano-scale properties that make them attractive for diverse applications such as drug delivery, food supplements, nanoparticle synthesis and pharmaceutical formulation. However, there is little knowledge in nanoemulsion literature about controlling and predicting droplet size. In this article, we propose a scaling relation to predict the dependence of nanoemulsion droplet size with physical properties such as viscosity of the droplet phase and continuous phase, and process parameters such as input power density. We validate our proposed scaling with a wide range of droplet size data from nanoemulsions prepared with high pressure homogenization and ultrasonication. Our proposed scaling also compares favorably with experimental data from literature. The scaling relation can serve as a guiding principle for rational design of nanoemulsions.
- This article is part of the themed collection: Soft Matter Lectureship Winners