Phase engineering of inorganic halide Cs–Pb–Br perovskites for advanced energy conversion
Abstract
All-inorganic metal halide perovskites have been actively investigated as promising energy-converting materials for abundant applications owing to their excellent electronic and optical properties. Three-dimensional (3D) CsPbBr3, two-dimensional (2D) CsPb2Br5, and zero-dimensional (0D) Cs4PbBr6 obtained by Cs–Pb–Br dimensional engineering at the molecular level open a new avenue for the development and application of metal halide perovskites. A continuously increasing number of studies are devoted to the phase transitions of 3D CsPbBr3, 2D CsPb2Br5 and 0D Cs4PbBr6 to improve the stability and electronic and optical properties of metal halide perovskites by forming multi-phase perovskite structures. Herein, recent advances in the phase transitions of these three materials are discussed systematically. The processes occurring during the reversible phase transitions of 3D CsPbBr3, 2D CsPb2Br5 and 0D Cs4PbBr6 are elaborated, and their reaction mechanisms are described. In addition, the latest applications of all-inorganic metal halide perovskites in photoelectric, electro-optical, and all-optical conversion processes are summarized. Finally, future research directions related to the development of inorganic metal halide perovskites for these applications are outlined. In summary, the phase transitions of all-inorganic perovskites provide attractive opportunities for multi-field applications.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles