Aligned packaging of in situ grown CsPbBr3 nanorods within polystyrene nanofibers for enhanced polarized luminescence properties†
Abstract
In the present work, we report a strategy for aligned packaging of in situ grown CsPbBr3 nanorods (NRs) within polystyrene (PS) nanofibers (CsPbBr3 NR@PS) based on magnetic field assisted electrospinning for enhanced polarized luminescence properties. The as-constructed CsPbBr3 NR@PS fiber membrane exhibits an improved orientation and increased aspect ratio (AR) of the aligned CsPbBr3 NRs within the PS fibers with the increase of the external magnetic field strength. Consequently, their luminescence polarization ratio (P) can be fundamentally enhanced with the increase of the external magnetic field strength. The P of the sample prepared at a magnetic field of 150 mT reaches 0.23, which is 2.6 times that of the conventional analogue fabricated without a magnetic field, and close to the theoretical emission polarization one (Pem-theory), representing their potential applications in optical devices such as liquid crystal displays.
- This article is part of the themed collection: Journal of Materials Chemistry C HOT Papers