Chiral palladium pincer complexes for asymmetric catalytic reactions
Abstract
Palladium pincer complexes, containing a monoanionic terdentate ligand composed of an anionic aryl carbon atom and two mutually compatible donor sites, have aroused considerable interest since their first reports in the late 1970s. The high stability of the Pd pincer complexes and particularly their high modularity make these species ideal candidates for catalysis. Furthermore, the nature of the meridional coordination of the pincer ligands, and along with this their ability to enforce a stereo-specific environment around the Pd center, provide a good opportunity for developing chiral Pd pincer catalysts. Thus, a broad variety of chiral Pd pincer complexes have been prepared by the introduction of various stereochemical centers in the pincer skeletons. These chiral Pd pincer complexes have been successfully applied to many asymmetric catalytic reactions such as hydrophosphination reactions, allylation of aldehydes and imines, Michael and aldol reactions, Suzuki–Miyaura reactions as well as reactions of nitrile compounds with imines. This review focuses on the synthetic methods and the applications of chiral Pd pincer complexes in asymmetric catalysis.
- This article is part of the themed collection: Catalysis & biocatalysis in OBC