Kyle L.
Fort‡
abc,
Michiel
van de Waterbeemd‡
ab,
Dmitriy
Boll
c,
Maria
Reinhardt-Szyba
c,
Mikhail E.
Belov
c,
Eita
Sasaki
d,
Reinhard
Zschoche
d,
Donald
Hilvert
d,
Alexander A.
Makarov
ac and
Albert J. R.
Heck
*ab
aBiomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands. E-mail: a.j.r.heck@uu.nl
bNetherlands Proteomics Center, 3584 Utrecht, The Netherlands
cThermo Fisher Scientific (Bremen), 28199 Bremen, Germany
dLaboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
First published on 8th November 2017
Native mass spectrometry can provide insight into the structure of macromolecular biological systems. As analytes under investigation get larger and more complex, instrument capabilities need to be advanced. Herein, modifications to an Orbitrap Q Exactive Plus mass spectrometer that increase signal intensity, mass resolution, and maximum m/z measurable are described.
While the analysis of these high molecular weight systems has been successfully performed on time-of-flight mass spectrometers, more recent developments have demonstrated that Orbitrap™-based mass spectrometers can be modified to perform these analyses, with the ability to transmit and detect ion signals for biomolecular assemblies of up to MDa in size.8,13 However, although commercially available Orbitrap mass spectrometers have performed well for analyses of large single proteins and small protein complexes, further advances in instrumentation are required to advance to the routine analysis of increasingly large biological systems, e.g., intact ribosomes, membrane ion channels, and virus capsids. Currently, Orbitrap instruments can detect ion signals up to about 20
000 m/z; however, at these values, the transmission of these ions is low and prohibits the use of long transient length acquisitions, which are typically needed for optimal mass resolution. Thus, to enhance the information obtainable with native MS, the ion transmission properties of high (>20
000) m/z ions must be increased.
Herein, we sought to make modifications to the Orbitrap platform to further increase the sensitivity and transmission properties for very large protein complexes. Collectively, these modifications greatly increase the transmission and detection of ions at very high m/z values on the Q Exactive Plus mass spectrometer, whereby the abundance of the signal is enhanced 5–10 fold and ion signals up to 70
000 m/z can be detected. Preliminary data acquired with the modifications described here have already been reported through the analysis of E. coli ribosomal particles.14 Here, we provide more in-depth details on all the modifications made, and describe much more technical data on the performance characteristics of the new instrument.
736.2 Da).15 The capsid samples were buffer exchanged into 150 mM ammonium acetate with 25 mM triethylammonium acetate, at a pH of 8.0 for charge reducing conditions and 150 mM ammonium acetate, pH 8.0 for non-charge reducing conditions. Aliquots of 1–2 μL of each analyte solution were loaded into a borosilicate capillary emitter that had been gold-coated. Ionization was facilitated by biasing this emitter +1.2–1.4 kV with respect to the heated capillary inlet. MS analysis was performed at a transient length of 64 ms for GroEL and AaLS. During comparative studies between in-source trapping enabled and normal operation, all MS instrument parameters, including RF ion optic frequencies, were held constant. The trapping potential was held at +69 V and the desolvation voltage was variable as noted in the text. For variable injection flatapole RF voltage studies, the RF Vp–p values were changed in the acquisition software. Mass resolution was calculated using the full width half maximum (FWHM) definition.
766.4 Da) was used as model system and analyzed in the two various modes of operation. Both of these spectra (Fig. 2a and b) were collected without use of the HCD cell to isolate the desolvation effect of the in-source trapping modification. The mass spectrum in normal operation mode shows a charge state envelope of the intact protein complex with charge states ranging from 71 to 64+ (Fig. 2a). Trapping enabled mode shows a similar charge state envelope (Fig. 2b); however, here the mass resolution of each charge state is substantially increased. For the 68+ charge state in normal operation, there are partially solvated ions, as seen by the presence of shoulder peaks that occur at 11
820 m/z, which lead to considerable peak broadening (Fig. 2a, inset). Upon application of the desolvation voltage, the intensity of solvated ions is reduced, the peak width narrows, and the centroid is shifted to lower m/z values, consistent with more efficient desolvation. While desolvation is not complete, as shown by a peak width that is higher than the isotopically limited peak width (ca. 1 m/z), these data show that in-source trapping assists in desolvation, leading to an increase in the apparent mass resolving power from 1070 in normal operation mode to 1680 during trapping enabled mode (Fig. 2a and b, insets).
The combination of the desolvation voltage and the trapping potential allows for significant increases in ion intensity owing to improvements in transmission efficiency (see ESI Fig. 3†). The signal intensity of the base peak for GroEL without in-source trapping has an intensity of 4E5 (Fig. 2c). With the trapping enabled and using a desolvation voltage setting of −25 V, this intensity is increased by 20%. Increasing the desolvation voltage to −50 V, shows a fivefold signal increase. However, when this voltage is increased further to −75 V, there is a reduction in intensity as compared to a setting of −50 V. One plausible cause for this is the ions are increasingly radially scattered by the saddle-shaped reflecting field when the desolvation energy is increased, as described in the ESI† of paper.13 If the RF potential is no longer sufficient to correct this radial scattering, the ion transmission will be reduced. To test this hypothesis, the total ion current (TIC) of GroEL was monitored as a function of applied RF voltage amplitude and desolvation energy (Fig. 2d). At the lowest RF voltage amplitude, 200 Vp–p, the TIC is independent of the desolvation voltage. As the RF voltage is increased to 350 Vp–p, the TIC for −75 V increases while the increases for −100 V and −125 V are minimal. This data indicate that the RF voltage is now at a level that can radially confine the ions after they are subjected to the −75 V desolvation voltage, but at higher values and thus higher degrees of radial scatter, the ions are not efficiently radially trapped. The data clearly shows that there is an optimal RF voltage for each desolvation energy (and also each m/z), consistent with the variable scattering energies associated with each individual setting. For −75 V, the signal is optimized and plateaus at an RF voltage of 500 Vp–p, while 550 Vp–p and 600 Vp–p are needed for desolvation energies of −100 V and −125 V, respectively. Taken together, these data indicate that the combination of more effective desolvation, as well as, the reduction of the ions’ axial momentum through in-source trapping are responsible for the substantial increases in signal.
These gains in signal intensity become progressively important as the size of the biological system under investigation increases and as the chemical and or structural nature of the system becomes increasingly more difficult, e.g., membrane proteins, protein-nucleic acid complexes and endogenous protein complexes where ion signal can be divided amongst several different proteoforms, limiting the ion intensity for any one specific proteoform. The challenge arises from the ion signal intensity often dictating transient length, and thus the mass resolution, at which a mass spectrum can be acquired. For many analytes, these high transient acquisitions are often prohibitively long and result in poor signal-to-noise. Thus, the analytical benefit for in-source trapping is two-fold. The modification assists in desolvation of the ions, increasing the experimental obtained resolution or GroEL by 60% as compared to the unmodified instrument, even without further desolvation in the HCD cell. Moreover, the increase in signal intensity obtained with in-source trapping provides a means for faster acquisitions at higher mass resolution settings, which will allow for greater elucidation of structural detail.
000
000 m/z and 35
000 m/z on the MS2 level; however, low transmission of these ions prevented use of long transient lengths and limited sensitivity.13 Now, with in-source trapping and all the RF frequencies being reduced, the transmission of very high m/z ions to the C-trap has greatly increased. However, it is important to consider the requirements needed to successfully transmit high m/z ions from the C-trap into the mass analyzer. When any ion is ejected from the C-trap toward the mass analyzer, a deflector electrode turns the ions into the entrance slot of the Orbitrap. After a set amount of time, the deflector electrode is pulsed to a compensation voltage to minimize field perturbations within the device, allowing for successful mass analysis, but, in doing so, prevents any additional ions from entering. While the standard pulse time works well for the peptides, proteins, and small protein complexes, larger m/z ions, where their time of flight from the C-trap to the Orbitrap is longer, do not have time to enter the Orbitrap before the deflector is pulsed to the compensation voltage and the Orbitrap is closed. Thus, this pulse time must be lengthened to allow these high m/z ions to enter the Orbitrap. As such, the final modification was to allow for variable pulse times of the deflector electrode, keeping the Orbitrap “open” for longer and allowing the high m/z ions to enter. To investigate the cumulative effect of all the aforementioned modifications on the transmission properties of high m/z ions, mass analysis of a virus-like protein assembly was performed.
On the MS1 level, a homogeneous Cp 180-mer virus-like protein assembly under charge reducing conditions shows a well resolved charge state envelope centered around 30
000 m/z (Fig. 3a), corresponding closely to the data previously reported by Sasaki et al. on the same system.15 To determine the maximum MS2m/z value achievable, the Cp 180-mer was analyzed with non-charge reducing conditions, which shifted the charge state envelope to 23
000 m/z (Fig. 3b). Application of 250 V collision energy in the HCD-cell shows a product spectrum (Fig. 3c) with ion signals up to 50
000 m/z, corresponding to the sequential loss of individual protein subunits (see Table 1 for mass assignments and resolution). At maximum collision energy (Fig. 3d), further subunit ejection produces well resolved ion signals up to 70
000 m/z. In fact, at the highest m/z signal obtained (Fig. 3d, right inset), the mass resolution is still over 500, which allows for baseline separation of the individual dissociation products at these high m/z values (Fig. 3d, left inset). Furthermore, this increase in detectable m/z value almost doubles the previous limit of unmodified instrument and reduces the spectra acquisition time from what was previously hours, to minutes on the modified machine owing to higher transmission efficiency.
| Ejected subunits | Deconvoluted mass (kDa) | Expected mass (kDa) | Deviation from expected mass | Average mass resolution | |
|---|---|---|---|---|---|
| Cp 180 | 0 | 3021.1 ± 0.4 | 3012.5 | 0.28% | 375 |
| Cp 179 | 1 | 3003.3 ± 0.4 | 2995.8 | 0.25% | 669 |
| Cp 178 | 2 | 2986.0 ± 0.3 | 2979.0 | 0.23% | 517 |
| Cp 177 | 3 | 2968.9 ± 0.2 | 2962.3 | 0.22% | 471 |
| Cp 176 | 4 | 2951.8 ± 0.2 | 2945.6 | 0.21% | 450 |
| Cp 175 | 5 | 2932.7 ± 0.3 | 2928.8 | 0.13% | 501 |
| Cp 174 | 6 | 2915.7 ± 0.3 | 2912.1 | 0.13% | 468 |
| Cp 173 | 7 | 2899.0 ± 0.1 | 2895.4 | 0.13% | 429 |
| Cp 172 | 8 | 2882.3 ± 0.1 | 2878.6 | 0.13% | 401 |
| Cp 171 | 9 | 2865.9 ± 0.4 | 2861.9 | 0.14% | 455 |
000 m/z being shown. These attributes will become increasingly advantageous for the future analysis of certain biological systems, namely systems that possess a high degree of structural complexity. Many biological systems require binding of small molecule co-factors such as magnesium or adenosine triphosphate (ATP); moreover, endogenous protein complexes often exhibit can exhibit post translational modifications or site amino-acid point-mutations. Currently, these present a challenge for modern mass spectrometry as low signal intensity often requires the use of suboptimal mass resolution settings, limiting the depth of structural detail measured with native MS. Thus, the modifications described here provide the next stepping stone in instrumentation and open the door for faster, better-resolved native MS analysis of these systems.
Footnotes |
| † Electronic supplementary information (ESI) available. See DOI: 10.1039/c7an01629h |
| ‡ These authors contributed equally. |
| This journal is © The Royal Society of Chemistry 2018 |