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Body sounds serve as a valuable source of health information, offering insights into systems such as the

cardiovascular, pulmonary, and gastrointestinal systems. Additionally, body sound measurements are

easily accessible, fast, and non-invasive, which has led to their widespread use in clinical auscultation for

diagnosing health conditions. However, conventional devices like stethoscopes are constrained by rigid

and bulky designs, limiting their potential for long-term monitoring and often leading to subjective diag-

noses. Recently, flexible, wearable mechano-acoustic sensors have emerged as an innovative alternative

for body sound auscultation, offering significant advantages over conventional rigid devices. This review

explores these advanced sensors, delving into their sensing mechanisms, materials, configurations, and

fabrication techniques. Furthermore, it highlights various health monitoring applications of flexible, wear-

able mechano-acoustic sensors based on body sound auscultation. Finally, the existing challenges and

promising opportunities are addressed, providing a snapshot of the current picture and the strategies of

future approaches in this rapidly evolving field.

1. Introduction

The human body functions through the operating and co-
ordinated interaction of its organs. The activities of several
organs such as the heart, lung, and bowel involve mechanical
motions, producing vibrations and contractions that are trans-
duced through body tissues and the skin, manifesting as body
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sounds. In the broad sense, body sounds are all the rhythmic
signals emitted by the body, whether audible or inaudible. For
example, the activity of the heart causes audible sounds that
can be heard from the chest wall, and it also causes the pulse
wave to expand through blood vessels that can be felt at points
like the wrist or throat.1 Body sounds are a valuable source of
health information, providing insights into systems such as
the cardiovascular, pulmonary, and gastrointestinal systems.2

Even small structural changes in organs can be detected and
recorded through these sound patterns. Moreover, body sound
measurements are easily accessible, fast, and non-invasive,
which has led to their widespread use in clinical auscultation
for diagnosing health conditions.

Stethoscopes are among the most common medical instru-
ments used for body sound measurement. Developed based on
a concept invented more than 200 years ago with key com-
ponents including a small disc-shaped resonator that is placed
against the skin and tubes connected to two earpieces,3 stetho-
scopes are available worldwide and are one of the first medical
tools used by clinicians to assess the symptoms and physical
status of patients, besides temperature sensors. Despite their
low cost and effectiveness in assessing body sounds, analog
stethoscope still poses several limitations. In particular, their
rigid and bucky housing prevents them from being able to
monitor continuously for long periods of time. These devices
highly depend on doctors’ expert knowledge and experience to
diagnose diseases, and the measured heart sounds cannot be
shared among doctors or between healthcare providers and
patients. In some cases, the human ear is less sensitive to low-
frequency signals,4 including heart sounds and lung sounds.
This makes the assessment highly subjective. Furthermore,
auscultation performed in clinical settings may be associated
with some abnormal physical signals in patients that are not
seen in their routine activities due to changes in the environ-

ment. For example, white coat hypertension, also known as
white coat syndrome, is a form of labile hypertension in which
people exhibit a blood pressure level above the normal range
in a clinical setting but do not exhibit it under other con-
ditions. Those signals do not accurately reflect the true physi-
cal status of the patients outside the clinic. The demand for
reducing the subjectivity of auscultation and minimizing the
need for frequent hospital visits has driven research and devel-
opment of digital stethoscopes and acoustic sensing devices,
such as Inertial Sensing Units. These devices enable measure-
ments in ambulatory environments, offering wireless plat-
forms that address the limitations of traditional auscultation
by facilitating data sharing and post-measurement analysis
through machine learning algorithms. However, these devices
are often rigid and bulky, limiting their suitability for continu-
ous monitoring.

Flexible, wearable mechano-acoustic sensors have emerged
as an innovative solution for body sound auscultation, provid-
ing several advantages over conventional rigid devices.
Advances in micromachining have enabled the development of
miniature mechano-acoustic sensors, such as MEMS micro-
phones and accelerometers, with footprints as small as a few
square millimeters. These sensors can be integrated into flex-
ible printed circuit boards (fPCB) to create compact wearable
devices.1,5–9 The introduction of fully flexible sensors has
further improved skin contact and enhanced sensitivity. Some
flexible sensors are permeable,10 self-adhesive,11 and transpar-
ent,12 making them more suitable for long-term wear by redu-
cing discomfort and skin irritation. These attributes allow
such devices to be comfortably attached to the skin for pro-
longed monitoring, reducing artifacts and improving the
overall user experience. With those advantages, acoustic
sensors in soft, wearable form factors have demonstrated their
capability to continuously capture distinct soundwaves from
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the human body. Advances in material engineering, soft litho-
graphy fabrication, wireless communication, and data proces-
sing techniques (e.g., machine learning) have further sup-
ported the translation of these devices toward practical appli-
cations. Several flexible acoustic sensors have undergone clini-
cal validation, underscoring their potential for real-world
healthcare monitoring and diagnostics.

Considering the significant progress and high activity of
this research area, this review highlights recent advances in
flexible, wearable mechano-acoustic sensors for monitoring
body sounds in healthcare applications (Fig. 1a). Firstly, it
introduces a range of body sounds, including heart sounds,
breath sounds, bowel sounds, and cough and swallow

sounds, along with their importance in auscultation
(section 2). Secondly, the paper continues with emerging
sensing mechanisms including piezoresistive, capacitive,
piezoelectric, and triboelectric with a focus on their working
principle and materials (section 3). Sensor configurations,
including acoustic sensors, accelerometers, and pressure/
strain sensors, are then presented (section 4), together with
advances in fabrication techniques (section 5). The detailed
applications of the mechano-acoustic sensors in health
monitoring applications are subsequently discussed
(section 6). Finally, the paper concludes with a perspective
on the future directions and potential of this rapidly
growing research field.

Fig. 1 Mechano-acoustic sensing for body sound monitoring. Created with BioRender.com. (a) Flexible, wearable mechano-acoustic devices
attached to human skin to capture several body sounds. (b) Typical sensing mechanisms of flexible, wearable mechano-acoustic sensors, including,
left to right, piezoresistive, capacitive, and piezoelectric.
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2. Body sounds – a valuable source
of health information

The pattern of body sounds serves as a valuable source of
health information and is widely used for early disease diagno-
sis and monitoring. Non-speech body sounds, such as those
produced by the heart, lungs, or gastrointestinal system, pre-
dominantly occupy the lower frequency spectrum, ranging
from 20 Hz to 1300 Hz, compared to speech sounds and
environmental sounds, which are typically found in the higher
frequency spectrum of 300 Hz to 3500 Hz.2 Most body sounds
exhibit greater intensity within the band from 20 Hz to 200 Hz
yet experience significant attenuation as frequency increases.
The concentration of body sounds in low-frequency ranges
necessitates a focus on subtle changes in these frequencies, in
other words, higher frequency resolution in the low frequen-
cies. Body sounds auscultation therefore requires the use of
specialized acoustic sensors with high sensitivity to low-fre-
quency variations to effectively detect and differentiate
between the acoustic patterns of body sounds. Each type of
body sounds, such as those originating from the heart (e.g.,
murmurs or rhythm abnormalities) or lungs (e.g., wheezing or
crackles), exhibit distinct characteristics, associated with
specific anatomical locations, aligning with the function and
position of the underlying organs. The body sounds heard
through the skin are often complex sounds and consist of mul-
tiple components. For instance, heart sounds can be picked
up clearly from the chest wall yet often mixed with lung
sounds. The separation of these sounds for effective ausculta-
tion requires a thorough understanding of their distinct
characteristics mainly including frequency, amplitude, and
duration. This section summarizes the clinical information of
various body sounds from the heart, breath, cough, swallow-
ing, and bowel, as well as their mechanisms and distinctive
characteristics.

Heart sound

The heart sound is one of the most critical physiological
signals in clinical auscultation. For decades, it has been exten-
sively investigated for the diagnosis of heart diseases, as it pro-
vides essential information that aids in identifying various
pathological conditions of the heart, such as heart failure,
valvular disease, and cardiomyopathy.

Heart sounds are generated by the flow of blood during
cardiac activity as the heart valves open and close.3 The
sudden opening and closing of cardiac valves generate pulse
waves that propagate throughout the cardiovascular system,
leading to the dilation and contraction of blood vessels.
Audible sounds caused by these mechanisms are typically aus-
cultated at four specific sites on the chest wall: the aortic area,
pulmonic area, tricuspid area, and mitral area.13 Moreover,
these vibrations generate blood pulse waves that propagate
through the cardiovascular system, expressed as skin
vibrations that can be detected from various locations in the
human body, including the fingertips, wrists, throat, and

chest. A typical heart sound signal consists of four primary
components. The first heart sound (S1) occurs during ventricu-
lar systole, typically lasting between 0.1 and 0.12 seconds,
within a frequency range of 40 Hz to 60 Hz. The second heart
sound (S2) occurs during ventricular diastole, lasting approxi-
mately 0.08 seconds, with a frequency range of 60 Hz to 100
Hz.14,15 The third and fourth heart sounds (S3–S4) are rela-
tively faint, occurring within a frequency range of 15 Hz to 75
Hz. S3 is produced at the beginning of diastole, while S4
occurs during late diastole.16 Abnormalities in these sounds
have been shown to be indicators of heart failure during the
diastolic phase. The auscultation of S3 and S4 is crucial for
noninvasive diagnosis and early detection of myocardial
ischemia.17

Abnormal heart sounds have been shown to correlate with
various cardiovascular diseases. For example, researchers have
observed differences in heart sound patterns between healthy
individuals and patients with valvular heart disease. Healthy
heart sounds consist solely of the fundamental S1 and S2 pat-
terns, which result from the contraction and relaxation of the
heart. In contrast, unhealthy heart sounds display additional
noisy patterns alongside S1 and S2, such as systolic or diastolic
murmurs.18,19 The systolic murmurs of the mitral and tricus-
pid valve regurgitation during systole have acoustic signatures
of constant intensity and high frequency. In contrast, diastolic
murmurs are often detected in patients with aortic or pulmo-
nic valve regurgitation.7 Congenital heart disease (CHD) is the
most prevalent type of birth defect. It presents at birth and
potentially affects the structure of the heart and its normal
functioning. Patients with CHD exhibit additional sounds,
such as S3 and S4 sounds, murmurs, and clicks. Variations in
the heart structures associated with different categories of
CHD produce differences in the heart sounds, which finally
manifest as additional pathological heart sounds at various
stages of the cardiac cycle.20

Besides the appearance of abnormal sounds, the spectrum
pattern of heart sounds holds significant clinical value in
differentiating among various types of heart valve diseases. For
instance, coronary artery disease (CAD), caused by the depo-
sition of materials within or beneath the intima of the arteries,
alters the frequency patterns of heart sounds. Several studies
on analyzing diastolic function have shown that CAD is associ-
ated with an increase of energy occurring in the frequency
range below 200 Hz.21,22

Breath sound

Breath sounds serve as a valuable source of data on respiratory
patterns. The distinction between normal breath sounds and
those accompanied by adventitious sounds, such as wheezing
and crackles, provides critical information regarding the physi-
ology and pathology of respiration, including lung condition,
airway obstruction, and airway dimensions.26 These sounds
are generated by turbulent and vorticose airflow moving
through the tracheobronchial tree of the lungs. They are typi-
cally recorded from over the trachea or lungs using acoustic
sensors. The characteristics of the respiratory sound signals
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are highly dependent on the capturing locations.26 The fre-
quency of breath sounds ranges from 100 Hz to 4000 Hz,
depending on the positions they are recorded from. Since the
chest acts as a reducer and low-pass filter, breath sounds
recorded over the lung area typically fall within the range of
100 Hz to 1000 Hz. In contrast, breath sounds recorded at the
trachea are usually accompanied by noise with resonances, pri-
marily within the 100 Hz to 3000 Hz range.24 For the purpose
of acoustic flow estimation, the tracheal respiratory sound
signal is preferred due to its high intensity and sensitivity to
changes in respiratory flow, compared to lung sounds.27

Breath sound analysis provides valuable insights into pul-
monary conditions and heart failure, offering important diag-
nostic information for both respiratory and cardiovascular dis-
eases. Malmberg et al.28 demonstrated that spectral analysis of
breath sounds can effectively indicate airway obstruction
during bronchial challenge tests in children. Through experi-
ments, they observed an increase in the frequency content of
breath sounds in children with asthma, likely caused by
inhaled airflow limitation. Alshaer et al.29 demonstrated a
strong correlation between the breath sound envelope and the
detection of apneas and hypopneas, which are the primary
causes of sleep-disordered breathing. Furthermore, the identi-
fication of continuous adventitious breath sounds, such as
wheezing and crackles during the respiratory cycle, is impor-
tant in diagnosing obstructive airway pathologies.30 Table 1
summarizes the acoustic characteristics of adventitious
sounds and possible lung diseases.

Cough sound

Coughing is one of the body’s airway protection mechanisms,
preventing the entry of noxious materials into the respiratory
system.31 Cough sound has been utilized for the auscultation
of over 100 diseases related to respiration and other medically
relevant conditions. Analyzing the spectral patterns of cough

sounds can reveal changes in the structural properties of
tissues during therapy.32

Cough signals can be readily detected from tracheal sounds
due to their distinct patterns compared to other body
sounds.33 However, their characteristics have been found to
vary significantly based on gender, type of sputum, and body
structure.34 In 1996, Korpáš et al.32 demonstrated that the
intensity of cough sounds in patients with airway inflam-
mation is significantly higher than in healthy subjects.
Additionally, a study by Singh et al.35 found that the funda-
mental frequency of cough sounds tends to decrease with the
age of the speaker. For example, the frequency for the 14- to
20-year-old age group was 400 Hz to 600 Hz, while that for
speakers aged over 40 years was 200 Hz to 400 Hz.

Depending on the condition of the airways, coughs can be
classified into two categories: wet cough, which produces
sputum, and dry cough, which does not. Wet coughs are
widely considered to result from viral or bacterial infections
and are often contagious, while dry coughs may result from
conditions such as asthma, gastroesophageal reflux, postnasal
drip, sinusitis, and viral infections of the upper respiratory
tract. The detection of these types of coughs assists pulmonol-
ogists in the differential diagnosis of conditions such as pneu-
monia and bronchiolitis, particularly in children under the
age of two.36 In recent years, with advances in signal proces-
sing techniques, machine learning has been widely employed
for wet cough and dry cough classification37–39 and detection
of various types of diseases. In recent years, cough sounds,
along with breath sounds, have emerged as two common phys-
iological signals investigated and utilized for the diagnosis of
COVID-19.33,40–44 In addition, neuromuscular disorders, a
disease affecting the peripheral nervous system, can be diag-
nosed through cough impairment. A study by Recasens et al.45

demonstrated a reliable estimation of cough peak flow in
patients with neuromuscular disorders, indicating that a

Table 1 Acoustic characteristics of adventitious sounds and possible lung diseases

Adventitious
breath sounds

Location best
heard23 Acoustics24 Characteristics23 Possible lung diseases25

Crackles Peripheral
lung

Rapidly dampened
wave deflection

Discontinuous Alveolitis, pulmonary fibrosis, atelectasis,
congestive heart failure

Frequency 100–2000
Hz

High-pitched in fine crackles and
low-pitched in coarse crackles

Duration < 20 ms Inspiratory
Wheezes Bronchi Sinusoid Continuous Obstructive lung diseases (e.g. asthma),

cystic fibrosisFrequency 100–1000
Hz

High-pitched

Duration > 80 ms Expiratory > inspiratory
Rhonchi Bronchi Series of sinusoid Continuous Chronic bronchitis, tumors, pneumonia,

obstructive pulmonary diseasesFrequency < 300 Hz Low-pitched
Duration > 100 ms Expiratory > inspiratory

Stridor Larynx, trachea Sinusoid Continuous Laryngitis, laryngomalacia, anatomic
hypothesisFrequency > 500 Hz High-pitched

Inspiratory
Pleural friction
rub

Chest wall Rhythmic succession
of short sounds

Continuous Inflammation causes roughness of the
surfaces of the visceral and parietal pleura

Frequency < 350 Hz Low-pitched
Duration > 15 ms Inspiratory and expiratory
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cough peak flow (CPF) of less than 270 l min−1 is considered
abnormal. Another approach proposed by Infante et al.46

involved a machine learning model based on cough sound
analysis, achieving an accuracy of 74% for distinguishing
between healthy and unhealthy subjects, and 80% between
obstructive and non-obstructive conditions.

Swallow sound

Similar to coughing, swallowing is another airway protective
behavior that involves the movement of substances from the
oral cavity through the pharynx and into the esophagus.
Monitoring swallowing sounds is a crucial method for the
early diagnosis of swallowing disorders, including dysphagia –

a health issue that can cause difficulty in swallowing and may
lead to potentially fatal consequences.47

Swallowing sounds are associated with pharyngeal rever-
berations resulting from the opening and closing of valves, as
well as the vibrations of the vocal tract.48 Acoustically, they are
complex and influenced by various factors, including age,
gender, bolus volume, and different swallowing efforts such as
forceful, normal, or easy swallowing.47 Lima Nunes et al.49

demonstrated that men exhibited lower frequencies and
shorter durations for liquid swallowing compared to women.
Additionally, they observed that in older age groups, swallow-
ing time tended to decrease, and the peak frequency for liquid
swallowing was higher than that for saliva. A frequency range
of 150–450 Hz is demonstrated to yield the highest sensitivity
for detecting spontaneous swallows.50 The site over the lateral
border of the trachea immediately inferior to the cricoid carti-
lage has been shown to be the optimal site for detecting swal-
lowing sounds.51,52

Swallow records reveal the eating habits and ingestive beha-
viors of patients suffering from eating disorders, which serve
as a valuable source of data for obesity disease monitoring and
treatment. Monitoring ingestive behavior (MIB) has been
widely used in active weight control programs by providing
objective feedback needed for diet management.53 There have
been several efforts on food type classification and volume
estimating using swallowing patterns.53–57 Furthermore,
swallow sound patterns analysis provides valuable information
on swallowing diseases. For instance, the mean swallow dur-
ation for neurological patients with dysphagia was found to be
1402.1 ms for a liquid bolus of 10 ml water, which is much
longer compared to the mean swallow duration of 440 ms in
healthy individuals.58 Additionally, in male and female sub-
jects with Parkinson’s disease, swallow reflexes were triggered
over three times more frequently than in age-matched con-
trols. This increased frequency of swallowing in Parkinson’s
disease patients is often due to laryngeal bobbing, a failed
attempt to achieve full laryngeal elevation and open the crico-
pharyngeal sphincter.59 In another approach to distinguish
between healthy subjects and those with swallowing disorders,
Dudik et al.60 compared data from patients with dysphagia but
without stroke to previous data collected from healthy individ-
uals. They identified significant differences in center fre-
quency, peak frequency, and bandwidth, highlighting the

potential diagnostic value of these acoustic features in detect-
ing swallowing abnormalities.

Bowel sound

Bowel sound is closely associated with vital processes that
reflect health conditions and are influenced by a wide range of
intrinsic and extrinsic factors.61 It can be considered a vital
sign, comparable to heart sounds, particularly when intestinal
function is impaired or disrupted. Bowel sound monitoring is
particularly important for the early resumption of oral feeding
in patients after surgery to reduce the incidence of postopera-
tive ileus (POI).62 Bowel sound can occur as an isolated single
burst or as a consecutive pattern with a very short time interval
between the occurrences, called multiple bursts.63 Although
bowel sounds are produced regularly, the knowledge about
their mechanisms has been limited due to their random fre-
quency and variability. Understanding the relationship
between bowel movements, the movement of luminal con-
tents, and bowel sounds remains challenging, primarily
because of the absence of a comprehensive theoretical model.

In recent studies, physiologists believe that bowel sounds
are generated by peristaltic movements, which involve the con-
traction and relaxation of the gut walls, propelling intralum-
inal liquids and gases. This process creates audible sounds
that are indicative of intestinal activity and can provide insight
into the functioning of the digestive system.64–66 The domi-
nant frequency of bowel sounds ranged between 100 Hz and
300 Hz, with none of the recordings exhibiting a dominant fre-
quency above 1000 Hz.67 A study introduced by Craine et al.68

indicated that the frequency of bowel sounds is predominantly
centered around 300 Hz, with an approximate Gaussian profile
with a half-maximum width of about 150 Hz.

Bowel sounds, produced by the movement of intestinal con-
tents and gas during peristalsis, are clinically recognized as
useful indicators of intestinal function.68,69 For instance,
hyperactive bowel sounds, described as “loud”, “high-pitched”,
or “tinkling”, are often associated with conditions such as
diarrhea or early-stage intestinal obstruction. In contrast,
hypoactive bowel sounds, characterized by significantly dimin-
ished or absent sound, are linked to conditions like bowel
obstruction, paralytic ileus, bowel torsion, or peritonitis, all of
which may result in reduced peristalsis.70 Patients suffering
from bowel diseases, such as colon cancer and irritable bowel
syndrome (IBS), or medical and neurological conditions that
affect the intestinal tract, often experience motility and func-
tional bowel disorders that result in changes in bowel sound
patterns. A significant difference in the sound-to-sound inter-
val has been observed between patients with IBS and healthy
individuals.68 For healthy subjects, the interval is approxi-
mately 1931 ± 365 ms, whereas for the IBS group, it is signifi-
cantly shorter, around 452 ± 35 ms. This difference highlights
the altered bowel motility patterns associated with IBS. Bowel
sounds dominant frequency and duration have been also
proved to differ based on the condition of intestinal obstruc-
tion.67 It was found that in acute large bowel obstruction, the
sound duration was significantly longer, with a median of 0.81

Nanoscale Review

This journal is © The Royal Society of Chemistry 2025 Nanoscale, 2025, 17, 9652–9685 | 9657

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
fe

br
ua

r 
20

25
. D

ow
nl

oa
de

d 
on

 8
.1

.2
02

6.
 0

4.
50

.3
7.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4nr05145a


seconds compared to 0.55 seconds in acute small bowel
obstruction (P = 0.021). Additionally, the dominant frequency
was notably higher in large bowel obstruction, at 440 Hz, com-
pared to 288 Hz in small bowel obstruction. These findings
suggest that swallow sound analysis could serve as a useful
non-invasive indicator for differentiating between types of
bowel obstructions.

3. Sensing mechanisms and materials

Body sounds produce various types of mechanical stimuli on
the skin surface, including strain, pressure, and vibration.
Electromechanical transducers are crucial for detecting and
analyzing the mechano-acoustic signals generated by the
human body. This section provides an overview of common
sensing mechanisms such as piezoresistive, capacitive, and
piezoelectric effects that can be employed in the development
of miniaturized, wearable sensors for measuring the aforemen-
tioned body sounds.

Piezoresistive

Piezoresistive sensors function based on the principle that a
mechanical load deforms the sensing element, resulting in a
change in its electrical resistance. This deformation occurs
when a sensor is subjected to acoustic waves, allowing it to
convert sound pressure into an electrical output. This signal
can then be processed and analyzed to provide information on
the acoustic characteristics. For isotropic electrical conductors,
the relative change in resistance can be expressed in terms of
strain as follows:71

ΔR
R

¼ Δρ
ρ

þ ð1þ 2νÞΔl
l

ð1Þ

where l is the length, ν is the Poisson’s ratio of the material
and ρ is the resistivity. Generally, the change in resistance of a
stressed metal is predominantly influenced by alterations in
its geometry, whereas for a semiconductor, the change in resis-
tance primarily relies on variations in the resistivity.72

The piezoresistive effect has been employed in a diverse
range of materials, including metals, semiconductors, gra-
phene, and hydrogels. In metallic materials, electrical resis-
tivity typically remains constant when subjected to mechanical
loads, resulting in resistance changes that are primarily
attributable to geometric modifications. This characteristic
leads to a relatively low sensitivity compared to semi-
conductors. However, the fabrication of metallic materials –

particularly on flexible substrates such as polyimide – is
simpler and requires fewer patterning and transfer steps.
Hence, metallic materials have been widely employed in a
broad range of strain sensors, including acoustic sensors.
Metals such as gold (Au), silver (Ag), platinum (Pt), copper
(Cu), titanium (Ti), and aluminum (Al) are known for their
excellent ductility, suitable for use in flexible electronic devices
and systems. Ag, Au, and Al provide good conductivity but
exhibit high chemical reactivity that may result in the release

of metal ions subjected to prolonged contact with body
tissues. To address these limitations, they are typically encap-
sulated within a biocompatible polymer to prevent exposure to
skin chemicals such as sweat. For instance, Cu-on-polyimide
has been utilized as an industrial standard material for manu-
facturing fPCB circuits. These Cu-based circuitries are typically
packaged within stretchable substrates such as Silbione™
rubber or Ecoflex to enhance their attachment to the skin.6,8,9

Furthermore, matrices of Ag nanowires (NWs) mixed with
PDMS for Ecoflex, offer exceptional mechanical and electrical
properties, which have been widely employed in wearable ther-
motherapy patches and can be extended to mechano-acoustic
sensing applications.73 On the other hand, biocompatible
metals such as Pt, Au, and Ti can serve as both metallic con-
tacts or sensing elements (or in some cases, ECG (electrocar-
diography) electrodes) in wearable sensors, without requiring
sophisticated encapsulation layers. As such, a pressure sensor
using 50 nm thick Cr/Au was demonstrated that can pick up
small skin vibrations caused by vessel expansion under blood
pulse waves to capture heartbeat from the wrist.1 Using a
Wheatstone full-bridge for signal readout, the sensor achieved
a sensitivity of Vp/Vref = 0.0031 mmHg−1 (here Vref and Vp are
the input and output voltage of the Wheatstone bridge,
respectively).

Recent improvements in the sensitivity of metallic piezore-
sistive substrates involve nanowire and surface engineering
techniques. Metallic nanowires exhibit a greater piezoresistive
effect due to their high aspect ratio, enabling a higher sensi-
tivity to small forces than traditional bulk materials.72 The util-
ization of high-conductivity metallic nanowires, such as silver
and gold, further contributes to reduced power consumption
for wearable applications.1 Another method that was recently
introduced to enhance the sensitivity of metallic materials is
the use of surface engineering techniques, such as micro-
cracks. This class of sensors operates upon the increase of
their dimensions resulting in the enlargement of cracks and
creating disconnections in conductive paths, resulting in an
increase in their resistance. This mechanism offers microcrack
sensors the ability to capture ultrasmall pressure caused by
sound waves. For instance, Gong et al.74 developed hierarchi-
cally resistive wearable sensors (HR) designed for body sound
monitoring from the throat. The sensor includes a cracked
platinum film engineered with 20 nm cracks on its surface
(cracked Pt), for acoustic signals detection, and two other
layers based on gold nanowires (v-AuNWs and u-AuNWs), for
larger signals detection such as finger touch or throat move-
ment. The cracked Pt layer was demonstrated to obtain a low
detection limit down to 0.01% with a sensitivity as high as
0.33 Pa−1, enabling it to detect signals such as the human
carotid artery pulse, respiration, and speech.

While metallic sensing elements typically offer a gauge
factor of below 10, several semiconductors exhibit a higher
gauge factor of up to 200,75 making them suitable for the
development of wearable acoustic sensors. Furthermore, their
electrical conductivity can be tuned by varying the carrier con-
centration, facilitating the miniaturization process and inte-
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gration with external conditioning circuits. The unique mechan-
ical properties (e.g., a high Young’s modulus of 169 GPa in
〈110〉 Si) and chemical stability are some key characteristics that
enable the development of free-standing microstructures such
as cantilevers and diaphragms, which are critically important
for acoustic sensors.76,77 Examples of wearable acoustic sensors
for the detection of low-frequency acoustic signals include the
work reported by Nguyen et al.77 utilizing a silicon-based canti-
lever that can achieve a resolution of approximately 0.2 mPa,
over the frequency range of 0.1–250 Hz. The highly flexible
structure allowed the cantilever to obtain a sensitivity of over
10−2 Pa−1. The high sensitivity and low-frequency detection
capability were achieved by employing narrow hinges (10 µm in
width) in the cantilever while retaining a small footprint of the
sensing element (300 × 300 µm square).

Most recently, low-dimensional materials (e.g., 1D and 2D)
such as graphene,78–80 carbon nanotubes (CNTs),81–83 and
MXene81,84–86 have emerged as a candidate for flexible sensors
due to their outstanding properties (Fig. 2a). Mixing these
highly conductive, low-dimensional materials with soft poly-
meric substrates offers much higher stretchability compared
to traditional strain sensors based on metals or semi-
conductors, which usually exhibit narrow sensing ranges of
below 5%.87,88 One of the most commonly used materials is
graphene, which is composed of a single layer of carbon atoms
arranged in a hexagonal honeycomb lattice and demonstrates
exceptional electrical conductivity and mechanical strength.
Employing reduced graphene oxide (rGO) with a gauge factor
ranging from 16.2 to 150, Liu et al.78 reported a fish-scale-like
sensor for heart pulse capturing that offers an extensive
sensing range of up to 82% strain and a detection limit of
down to 0.1% strain. Another class of low-dimensional
materials used in acoustic sensors is carbon nanotubes
(CNTs), which exhibit cylindrical structures created by rolling
up graphene sheets. Their high aspect ratio and nanoscale
dimensions enhance their sensitivity to acoustic vibrations.
Liu et al.89 developed a strain sensor utilizing a thickness-gra-
dient film of single-wall carbon nanotubes (SWCNTs) on an
elastic polydimethylsiloxane (PDMS) substrate through a self-
pinning method. The resulting material exhibited a remark-
able gauge factor of up to 161 for strains less than 2% and the
capability to withstand uniaxial strains exceeding 150%.
MXenes are a new class of two-dimensional transition metal
carbides and nitrides with exceptional electrical properties.
Composites based on MXenes offer additional tunability and
can significantly enhance the performance of piezoresistive
acoustic sensors. By utilizing the layer-by-layer (LBL) spray
coating technique, Cai et al.81 developed sandwich-like Ti3C2Tx
MXene/CNT sensing layers that were fabricated by using dela-
minated Ti3C2Tx MXene flakes incorporating with single-
walled carbon nanotubes (SWNTs). The wearable sensor with a
thickness of less than 2 µm can detect a large range of defor-
mation with a detection limit of 0.1% strain. It exhibited a
high stretchability of 130%, with a gauge factor of up to 772.6,
enabling real-time monitoring of large-scale motions and
detecting several vocal sounds from human throats. Despite

their unique characteristics, 2D materials still represent a
number of limitations such as hysteresis, poor linearity, and
instability under environmental variations. Additionally, adverse
conditions, such as sweating and high humidity, can signifi-
cantly impact the stability of sensing materials and compromise
sensor performance. For instance, MXene can be oxidized
under ambient conditions, reducing the lifetime of the sensors
and causing consistency and reliability issues. To address these
challenges, one promising approach involves surface modifi-
cation techniques, such as functionalization or passivation, to
shield the MXene surface from oxidative degradation. Recently,
biomimetic superhydrophobic surfaces have been used which
enhance material stability, significantly improve environmental
adaptability, increase durability, and bolster resistance to cor-
rosion and liquid exposure.90 For example, He et al.91 developed
a cotton-based superhydrophobic polypyrrole (PPy)/MXene
pressure sensor with outstanding sensing performance and
excellent stability. The sensor, consisting of MXene entirely
covered by PPy, demonstrated stability in wet and corrosive
environments, with favorable long-term performance over 1000
cycles. Additionally, with a wide detection range of 0–80 kPa
and a high sensitivity of −20.1 kPa−1 for the 0–2 kPa range, the
sensor can be mounted on various body parts, such as fingers,
elbows, and wrists, to monitor physiological signals.

In addition to these piezoresistive materials, various filler
compositions, such as polyurethane (PU),92 polydimethyl-
siloxane (PDMS),83 and poly(3,4-ethylene dioxythiophene):poly
(styrene sulfonate) (PEDOS:PSS)12,93 have been employed to
tune both the electrical and mechanical properties of sensors.
Among these conductive polymers, PEDOT:PSS has been one
of the most widely utilized materials due to its excellent dis-
persibility in water and polar solvents, biocompatibility, high
electrical conductivity, and remarkable stability.94 The chemi-
cal stability of the polymers also enhances long-term reliable
performance in wearable sensors under various biological
environments, as well as under high temperatures and highly
corrosive conditions.95 Recently, hydrogels82 have emerged as
promising candidates for long-term wearable devices due to
their biocompatibility, exceptional stretchability exceeding
1200%, and self-healing capabilities.96 However, due to their
high water content, hydrogel-based sensors are relatively sensi-
tive to ambient temperature, leading to reduced stability and
limiting their utility in diverse monitoring applications.97 This
issue can be addressed by incorporating organic solvents into
hydrogels, forming binary-solvent-based organic conductive
hydrogels.98 This crosslinking strategy disrupts the strong
hydrogen bonding between water molecules, effectively
decreasing water evaporation and freezing within the hydrogel.
The solvent can strengthen the matrix, making the sensor
highly suitable for prolonged and continuous monitoring of
physical activities under environmental changes.

Capacitive

Capacitive sensors operate based on the change of the dielec-
tric constant or geometrical dimensions of capacitors under
acoustic pressure. These sensors consist of two conductive
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Fig. 2 Typical materials of sensing mechanisms. (a) Piezoresistive, (b–c) capacitive, and (d–e) piezoelectric. (a) MXene-based piezoresistive sensor
with Bionic Intermittent Structure (BIS). Scale bar: 0.5 cm. Reproduced with permission.85 2023, Wiley-VCH. (b) Capacitive pressure sensors using
pyramidal microstructured PDMS. Reproduced with permission.119 2014, Wiley-VCH. (c) Capacitive pressure sensor with natural material structured
dielectric layers. Reproduced with permission.122 2018, Wiley-VCH. (d) Piezoelectric sensors with island-bridge structures based on multi-walled
carbon nanotube (MWCNT). Reproduced with permission.132 2017, Elsevier. (e) Piezoelectric PVDF nanofibers 310 ± 60 nm diameter. Reproduced
with permission.136 2016, Springer Nature.
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plates (electrodes) that are placed parallel to each other,
separated by a dielectric material (an insulating layer). The
simplest configuration is two parallel flat plates that form a
capacitance of:99

C ¼ ε0εrA
d

ð2Þ

where A is the overlapped area of the two plates, ε0 is the per-
mittivity of free space, εr is the dielectric constant of the
material between the plates, and d is the separation between
the plates. Changes in capacitance primarily occur due to vari-
ations in the dielectric constant of the dielectric layer εr, the
distance between the electrode layers d, and the area of overlap
between them A. The common mechanisms of capacitive
sensors involve the variation of the first two parameters,100

with the electrodes typically made from either thin film mem-
branes or flexible patches.

In the parallel thin film membrane configuration, dia-
phragm properties, such as Young’s modulus, Poisson’s ratio,
thickness, density, and geometric shape are the key features
deciding the performance of acoustic sensors.72 A variety of
membrane materials have been employed, including mylar,101

metals,102,103 p-doped silicon,104 silicon nitride,105–107 silicon
carbide,108 polysilicon,109,110 polyimide,111 and graphene.112

Several research groups have utilized metals as diaphragm
materials for sensors.102,103 Although metals can be easily pat-
terned, they typically exhibit lower mechanical sensitivity and
are more likely to fail prematurely due to fatigue compared to
other materials. The mylar diaphragm was first introduced by
Hohm et al.105 showed higher durability. However, as it was
found to wrinkle under compressive stress, the authors pro-
posed the use of silicon nitride (Si3N4) to enhance the robust-
ness of sensors. Silicon nitride offers better tensile stress and
advantages in process integration. However, it still exhibits
relatively high intrinsic stress, affecting sensor performance.
Additionally, as an insulating material, Si3N4 requires the
deposition of metal electrodes on the membrane for electrical
functionality, adding complexity to the sensor design.113

Pedersen et al.111 developed polyimide diaphragms, featuring
several key advantages such as reasonable stress values, and
low processing temperature, typically below 300 °C, suitable
for integration with other components and materials without
risking thermal damage. Similar to Si3N4, polyimide requires
metal deposition and patterning on its top surface for sensing
acoustic waves. Compared to these non-conductive mem-
branes, Si (single crystal or polycrystal) can serve as both the
mechanical supporting layer and the electrodes.
Advancements in material engineering have enabled the devel-
opment of ultrathin Si membranes with thicknesses in a range
of a few hundred nanometers, enhancing the sensitivity of Si-
based capacitive sensors. The use of polysilicon which can be
formed under low-temperature processing can reduce residual
stress, further improving the performance of acoustic
sensors.109,114

The thin film capacitive sensors are composed of flexible
electrodes and elastic dielectric layers. Increasing the dielectric

constant is an effective strategy to enhance the sensitivity
based on changing the dielectric properties. This method
achieves both high initial capacitance and significant vari-
ations in capacitance. Commonly utilized dielectric layers
include PDMS, Ecoflex, and PET films with the dielectric con-
stants 2.3–2.8,114 2.17,115 and 3.5,116 respectively. Geometric
changes, such as a reduction in the separation distance d
between electrodes in response to pressure, depending on the
stiffness of the dielectric layer. Therefore, reducing the elastic
modulus of the dielectric layer can improve the sensitivity of
capacitive sensors.100 A common approach based on this
concept involves engineering dielectric layer surfaces with
microstructures. For instance, structuring the dielectric with
air pockets can effectively increase permittivity as air is dis-
placed during deformation. This approach also softens the
dielectric layers, further increasing the deformability of the
sensor. Several types of microstructures have been proposed,
including electrode microarrays,117 micropyramid
structures,117–119 abrasive papers,120 human tissues
inspired,121 and plant leaves122–124 (Fig. 2b and c).
Micropyramids are a widely used architecture due to their
simple fabrication and sensitivity. An 8 × 8 pixel pressure
sensor pad employing microstructured PDMS film proposed
by Mannsfeld et al.117 offers a sensitivity as high as 0.55 kPa−1,
much higher than that achieved in previous studies without
microstructures at 0.048 kPa−1.125 Yang et al. employed porous
materials, incorporating air into the dielectric layer during
deformation, effectively reducing the elastic modulus of dielec-
tric layers 44.5 kPa−1 in a low-pressure regime below 100 Pa.126

The proposed sensor utilized a dielectric layer combining
porous and micropattern structures, resulting in a significant
improvement in sensing performance, enabling it to capture
wrist pulses and gentle airflow and detect the landing of fruit
flies with a small pressure of 0.14 Pa.

Piezoelectric

Broad bandwidth, high sensitivity, and self-powered operation
make piezoelectric materials a preferred option for vibration
and sound detection.127 Unlike capacitive and piezoresistive
transducers which require power sources, piezoelectric devices
offer a unique capability for self-sensing and self-powering
wearable systems. Piezoelectric transducers, while functioning
as acoustic sensors, can also serve as actuators that propagate
sound waves into the body for ultrasound scans.
Piezoelectricity refers to the ability of certain materials to gene-
rate an electric charge in response to applied mechanical
stress, which can be approximated by static linear relations
between two electrical and mechanical variables:128

D ¼ εTE þ dT ðConverse effectÞ ð3Þ

S ¼ sET þ dE ðDirect effectÞ ð4Þ
where S is a strain tensor, T is a stress tensor, E is an electric
field vector, D is an electric displacement vector, sE is an
elastic compliance matrix when subject to a constant electric
field, d is a matrix of piezoelectric constants and εT is a permit-
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tivity measured at constant stress. The magnitude of the piezo-
electric effect is typically quantified by the piezoelectric con-
stants d,129 representing the ability of a material to convert
mechanical stress into electrical charge. The larger the piezo-
electric coefficient, the more effective the material is in con-
verting mechanical energy into electrical energy, making it a
key factor in evaluating piezoelectric performance for both
sensing, actuation, and energy harvesting applications. To
characterize piezoelectric materials, two key coefficients are
typically considered: d33 and d31. The d33 coefficient denotes
that the force is applied along the polarization axis, and the
charge is collected along the same axis, whereas for d31 the
force is applied along the polarization axis, but the charge is
collected along a perpendicular direction.130

These parameters in several natural materials have been
explored, including quartz (SiO2), topaz, and organic
materials: silk, wood, rubber, bone, and hair.131 Although
natural crystal-based materials show a high mechanical quality
factor (Qm), their manufacturing process is difficult and expen-
sive. Advances in material science enable the development of a
broad range of highly efficient piezoelectric materials includ-
ing semiconductors (PZT, GAN, ZnO), ceramics (e.g. BaTiO3,
LiNbO3), polymers (e.g. PVDF, PLLA), and composite materials.

Ceramic materials with high piezoelectric constants are
extensively used in medical applications and underwater com-
munication due to their exceptional properties.72 Ceramic
materials have large piezoelectric and dielectric coefficients,
high electromechanical coupling factors, and efficient energy
conversion rates. For instance, Barium Titanate (BaTiO3) has a
piezoelectric constant d33 of 190, which is significantly greater
than that of natural materials like quartz, which has a d33 of
2.3. However, piezoceramics are brittle and have low stretch-
ability, making them easily damaged under large mechanical
strains. As a potential solution for this limitation, the island-
bridge structure, consisting of movable floating islands and
flexible serpentine connections, significantly enhances the
overall stretchability of the structure132 (Fig. 2d). Complex and
expensive fabrication processes, along with their mechanical
brittleness are some of the main challenges in ceramic piezo-
electric materials for flexible, wearable acoustic sensors.

Despite having smaller piezoelectric effects, polymer
materials with mechanical flexibility are highly conformable to
human skin, enhancing their suitability for wearable sensor
applications. Piezoelectric polyvinylidene fluoride (PVDF)
sensors have attracted attention for wearable applications due
to their numerous advantages, including flexibility, wide fre-
quency response, low cost, ease of fabrication, biocompatibil-
ity, and air permeability.133 These features make PVDF an
ideal material for developing wearable sensors that can effec-
tively detect and monitor physiological signals.134–136 A belt-
type device with PVDF-based 30 µm thin film was introduced
early by Choi et al.134 to capture cardiorespiratory signals from
the chest wall. The PVDF sensor demonstrated the capability
to detect low-frequency chest movements down to 0.3 Hz with
an SNR of 18.06. The high stretchability of up to 30% stretch-
ing allows for integration with PDMS substrates, enabling con-

formal contact with human skin, and making it suitable for
capturing subtle skin deformations on the human wrist
(Table 2).

The low piezoelectric coefficients of piezoelectric polymers
can be addressed by utilizing piezoelectric composites that
combine ceramics and polymers, offering advantages such as
good flexibility, ease of processing, and a high piezoelectric
constant, making them ideal for wearable applications.138,139

For instance, incorporating graphene oxide into dissolved
PVDF forms a PVDF/GO piezoelectric material.138 This
material achieves a high sensitivity of 4.3 mV Pa−1 and the
ability to detect pressures as low as 10 Pa, suitable for captur-
ing vocal vibrations when attached to the throat. Furthermore,
the sensor can function as a nanogenerator, generating up to
1.2 nW m−2 of power harvested from respiration when
employed on a face mask. BaTiO3 particles can also be added
to polymers to improve their piezoelectric effect. The addition
of BaTiO3 further enhances the piezoelectric constant d31 of
P(VDF-TrFE) copolymer from 8.3 to 46 pC N−1,139 maintaining
high stretchability and providing high acoustic sensing capa-
bilities. These sensors can be incorporated into woven fabrics
and integrated into clothing, enabling the detection of heart
sounds and human voice vibrations transduced through the
chest wall.

Advances in micromachining have improved piezoelectric
performance with the development of nanofiber and micro-
structured materials. PVDF nanofibers exhibit significant
enhancements over thin films, including smaller diameters,
higher piezoelectric effects due to a higher length-to-diameter
ratio, and higher surface-to-weight ratio. Nanofiber-based
PVDF devices have achieved sensitivities as high as 266 mV
Pa−1,136 over five times greater than traditional PVDF film
devices (Fig. 2e). The sensitivity can be further extended by
employing three-dimensional topologies such as microstruc-
tures, greatly improving performance characteristics. Inspired
by human skin, multimodal electronic skin (e-skin) has been
developed, mimicking the diverse sensory structures and func-
tions of human fingertips.140 This e-skin employs flexible and
microstructured ferroelectric films composed of PVDF and
rGO, enabling the detection and differentiation of acoustic

Table 2 Piezoelectric coefficients for different piezoelectric inorganic
and organic materials137

Material Type

Piezoelectric constants

d33 (pC N−1) d31 (pC N−1)

Inorganic PMN-PT Single crystal 2000–3000
Quartz 2.3 −67
ZnO Crystal 6–13 −5
GaN 2–4 −1.5
AIN Ceramic 3–6 −2
PZT-5H 593 −274
BaTiO3 190 −78
LiNbO3 16 −1

Organic PVDF Polymer −33 23
PLLA 6–12

Review Nanoscale

9662 | Nanoscale, 2025, 17, 9652–9685 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
fe

br
ua

r 
20

25
. D

ow
nl

oa
de

d 
on

 8
.1

.2
02

6.
 0

4.
50

.3
7.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4nr05145a


pulse waves and airflow pressures as low as 0.6 Pa. These inno-
vations highlight the versatility and potential of advanced
piezoelectric materials in wearable sensing technologies.

4. Mechano-acoustic sensors
configuration

In addition to sensing mechanisms, the configuration of
mechano-acoustic sensors plays a key role in determining the
measurement bandwidth, range, and resolution. Depending
on the application, these sensors are generally categorized as
microphones, accelerometers, or flexible pressure/strain
sensors. While soft polymeric materials can conformally attach
to human skin due to their inherent flexibility, rigid MEMS
microphones and accelerometers, with their small footprints,
can be integrated into the fPCBs, allowing for stable contact
with the skin and minimizing artifacts. This section discusses
the mechano-acoustic sensors architecture and their
characteristics.

Microphones

Microphones are transducers that convert sound pressure into
electrical signals. Typical microphones can pick up frequen-
cies ranging from 20 Hz to 20 kHz, including almost audible
body sounds, such as cardiorespiratory and cough
sounds,9,76,141,142 and bowel sounds.66,70,143

Most of the structural designs of microphones utilize either
diaphragms or cantilever beams. When the sound pressure
impacts the microphones, it applies a force that causes the
thin diaphragm or cantilever beam to vibrate at a frequency
matching the sound wave. This vibration results in deflection
or bending of the diaphragm or beam in response to the
sound pressure. A sensing mechanism – mostly using piezo-
electric, capacitive, or resistive sensors – detects this deflection
and converts it into an electrical signal. This electrical signal
corresponds to the intensity and frequency of the sound,
enabling the acoustic sensors to capture audio or pressure vari-
ations. Each of the three primary sensing mechanisms – piezo-
resistive, capacitive, and piezoelectric – offers distinct advan-
tages and limitations. The comparison of sensitivity and
dynamic range between these mechanisms is shown in
Table 3.

Fig. 3 presents the typical structure designs of acoustic
sensors, including diaphragm, cantilevers, and structured
membranes. Diaphragm microphones suffer from residual

stress after manufacturing, which is often caused by their
fixed boundaries and various factors during fabrication (e.g.,
thermal expansion) that may induce unwanted tension across
the diaphragm. Due to these stresses, buckling in the radial or
circumferential direction can occur in the membrane,145 limit-
ing their mechanical properties and sensitivity. Several efforts
have been made to address this issue. Membrane cuts can
reduce buckling where buckling in the radial direction is
addressed by making some cuts in the circumferential direc-
tion146 while buckling in the circumferential direction is
addressed by creating cuts in the tangential direction, Fig. 3b.
Corrugations in the diaphragms and spring-supported dia-
phragms are some of the other techniques used to reduce the
initial stresses in the thin film diaphragms. Corrugations are
usually incorporated along the edges of the membrane to
maintain a flat central diaphragm area,147–149 but the corruga-
tion depth needs to be carefully considered, as an increase in
corrugation depth can reduce effectively buckling but also
impact the mechanical sensitivity.107 Spring-supported dia-
phragms can be achieved by using a rigid diaphragm with flex-
ible springs. Thus, the deformation caused by residual stress
can be significantly reduced. This design was further improved
to have better sensitivity (SNR) and bandwidth by using a flex-
ible V-shaped spring, silicon nitride electrical isolation, and
the ring-type oxide/polySi mesa, respectively.150

Those structural modification strategies can significantly
reduce the diaphragm buckling, however, are generally
complex and usually require multiple steps of fabrication.
Cantilever sensors can overcome these limitations owing to
their unique structural design. The single-point anchoring
configuration instead of clamped membrane minimizes the
buildup of initial stress that commonly occurs in diaphragms.

Table 3 Comparative analysis of three different transduction
schemes144

Parameters Piezoresistive Capacitive Piezoelectric

Input power Required Required None
Sensitivity (μV Pa−1) Low Good Medium

0.1 to 100 400 to 1000 10 to 500
Dynamic range Relatively wide Narrow Wide

Fig. 3 Typical configuration of wearable microphones. (a)
Configurations of diaphragm microphones based on different sensing
mechanisms, left to right: piezoresistive, piezoelectric, and capacitive.
(b) Membrane modification strategies to reduce initial residual stress, left
to right: membrane with surface cutting, membrane with spring sup-
ports, and membrane with corrugations. (c) Configurations of cantilever
microphones based on different sensing mechanisms, left to right:
piezoresistive, piezoelectric.
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This structure also allows pressure to be released through the
air gaps to avoid air trap that frequently occurs in the dia-
phragm design.151 Compared to the fully clamped structure,
the cantilever structure offers a higher sensitivity due to its
lower mechanical stiffness.152 Square and triangular cantilever
diaphragm sensors have been introduced by Fang’s group by
cutting a silicon membrane into four separate blades.150,153,154

Each of these cantilevers is suspended by one edge with the
cavity chamber. With the same diaphragm, the square cantile-
ver was found to provide larger stress and wider stress distri-
bution than the triangle shape, making a significant increase
in the sensitivity.150 To further enhance the sensing perform-
ance, serpentine support beams were employed to gain a
higher aspect ratio and thus increase the sensitivity. A piezo-
electric MEMS resonant microphone array proposed by Liu
et al.152 was demonstrated to gain an output voltage as high as
131.4 mV Pa−1. This high sensitivity enables the device to
capture respiration and detect wheezing in lung sounds.

Despite those advantages, the air leakage from the gap acts
like a high-pass filter,151 making cantilever microphones less
sensitive to low-frequency acoustic signals, typically below 20
Hz. This limitation prevents these sensors from capturing
several important body sounds, such as the S3 and S4 heart
sounds, which can go as low as 10 Hz. These specific frequen-
cies are critical in cardiovascular diagnostics, as they provide
insights into heart valve activities and potential abnormalities.
Reducing the gap surrounding the cantilever can slow the air
leakage rate, maintain the chamber pressure, and thus allow
the sensor to detect low-frequency acoustic signals. A four-tri-
angular-slave piezoelectric sensor with 1.36 μm gaps was intro-
duced by Tseng et al.,155 maintaining a high sensitivity at 10
Hz. By further reducing the gap to 1 μm, Nabeshima et al.151

demonstrated a low-frequency detection limit at 0.7 Hz,
capable of capturing vessel expansion caused by heart pulse
waves from the throat.

Accelerometers

Accelerometers are widely utilized in measuring vibrations or
acceleration, including health and medical monitoring appli-
cations, such as tracking heart rate, respiration, and body
motions. Unlike acoustic sensors, which detect sound
pressure, accelerometers have a unique element, namely proof
mass that significantly influences the sensing performance of
the accelerometer. The proof mass is typically suspended
within the fixed frame using cantilever beam structures,156

allowing it to move in response to inertia forces. When the
sensor is accelerated, the proof mass displaces due to inertia,
which can be detected using a sensing mechanism discussed
above. Compared to thin cantilevers or diaphragm structures
used in acoustic sensors, the addition of proof mass in acceler-
ometers provides greater motion inertia. This makes acceler-
ometers more sensitive to physical motion, such as movement
or acceleration, rather than sound pressure. Higher inertia
generally makes accelerometers a lower dynamic range com-
pared to acoustic sensors. The advances in micromachining
fabrication make MEMS-based accelerometers widely utilized

due to their tiny footprint, high sensitivity, and low power con-
sumption. Generally, piezoresistive and capacitive transduc-
tion are the most prominent sensing schemes used in MEMS
accelerometers.87

Piezoresistive accelerometers are among the first commer-
cialized acceleration sensors. The design structures of piezore-
sistive accelerometers include single cantilever beams, dual
cantilever-beam, and quad cantilever-beam structures, Fig. 4a
and b. MEMS-based piezoresistive accelerometers have several
advantages such as simple design, robustness, and simple
manufacturing process. They generally offer a wide bandwidth
but are limited by their relatively low sensitivity, making them
preferred for impulse/impact detection instead of wearable
health monitoring sensors.157 Capacitive accelerometers with a
typical design shown in Fig. 4c, in contrast, are highly sensitive
to small movements and can detect subtle changes in motion,
for monitoring low-g forces and low-frequency vibrations. With
those advantages, capacitive sensing-based MEMS acceler-
ometers have been utilized in high-precision applications,
including health monitoring. Despite those benefits, the non-
linear response is a limitation of the conventional capacitance
accelerometers, making the signal readout process complex.
To overcome the nonlinear response of capacitive mecha-
nisms, differential capacitive pressure microsensors were intro-
duced using the parallel comb structure, Fig. 4d. Under the
inertial force, the movement of proof mass causes the capaci-
tance to increase on one side of the lateral comb and decrease
on the other side, resulting in good linearity.158 Examples of
this approach include the work reported by Lou et al.,159 com-
posed of a proof mass, suspending serpentine springs, and
comb fingers. The device acts as a full-bridge capacitor sensor,
each half-capacitive bridge is split into two parts and located
at two cross-axis corners. This differential layout helps cancel
common-mode input noise such as substrate coupling, power
supply coupling, and cross-axis excitation and features a linear
range of ±13G. Lateral comb structures are also used widely in
tri-axis accelerometers, capable of detecting motion along all

Fig. 4 Typical configurations of wearable accelerometers. (a)
Configuration of piezoresistive cantilever accelerometer. (b) From left to
right: piezoresistive cantilever accelerometers with single cantilever-
beam, dual cantilever-beam, and quad cantilever-beam structures. (c)
Configuration of differential capacitive accelerometer. (d) Differential
capacitive accelerometer with lateral comb structure: configuration
(left) and schematic (right).

Review Nanoscale

9664 | Nanoscale, 2025, 17, 9652–9685 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
fe

br
ua

r 
20

25
. D

ow
nl

oa
de

d 
on

 8
.1

.2
02

6.
 0

4.
50

.3
7.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4nr05145a


three axes.160–162 Commercial tri-axis accelerometers, such as
the ADXL3357,163 and the LSM6DSL,9 have been adopted for
body sound monitoring because of their low cost, convenience,
and compact size. They are particularly effective for picking up
low-frequency body sounds (including heartbeats) and move-
ments (such as chest movements and body motions), with a
high sensitivity of 300 mV g−1.

Advances in nanoengineering have enabled the develop-
ment of ultra-thin electrode separation capacitive acceler-
ometers, which offer higher bandwidth and improved sensi-
tivity. These innovations make it possible to place the sensor
directly on the skin to detect body sounds transmitted through
the skin. These specialized sensors are known as acceler-
ometer contact microphones (ACM).164,165 For example, Gupta
et al.164 introduced a wearable ACM capable of capturing a
wide range of mechano-acoustic physiological signals. This
device is fabricated using the MEMS process on a silicon-on-
insulator wafer with a 40 μm thick device layer, and 270 nm
capacitive gaps. The ultra-thin gap features a sensitivity as
high as 76 mV g−1, and a linear response in the range of ±16 g.
The accelerometer can pick up a broad frequency range from
below 1 Hz to 12 kHz, including heart and respiratory rate,
heart sounds, lung sounds, and body motion and position of
an individual.

Flexible pressure sensors and strain sensors

Flexible thin patch sensors represent a class of mechano-
acoustic sensors widely used for monitoring body signals.
Compared to rigid MEMS acoustic sensors and accelerometers,
these devices typically utilize soft substrates and offer higher
conformable contact with human skin. Flexible pressure/strain
sensors operate based on the deformation of the skin surface
to which they are attached. Vibrations from the skin induce
stresses into the sensor, which are converted into electrical
signals through sensing mechanisms such as piezoresistive,
piezoelectric, triboelectric, or capacitive effects.130

Sensors with microstructured materials. Porous and micro-
structured materials have been used in various types of
sensors, including piezoresistive, capacitive, and piezoelectric
materials86,121,126,166 (Fig. 5a–c). Porous materials enhance
both electric and mechanical properties, while microstructures
improve the contact between electrodes and sensing layers. In
one such example, Park et al.166 proposed a piezoresistive
sensor using interlocked microdome arrays that increase the
contact area between electrodes. The sensor was achieved by
micromolding a composite of carbon nanotubes (CNTs) and
PDMS prepolymer into films with 3 × 4 μm microdome struc-
tures. These films, when combined face-to-face, form a piezo-
resistive sensor with a superior sensitivity of 15.1 kPa−1 and a
minimum detectable pressure of 0.2 Pa, enabling it to accu-
rately monitor breathing patterns. The sensor sensitivity was
further improved in another work reported by Ma et al.,86

which introduced a piezoresistive sensor based on ultralight
and super elastic aerogel. The sensor was fabricated by mixing
reduced graphene oxide (rGO) with MXene. The MX/rGO
aerogel not only combines the large specific surface area of

rGO and the high conductivity of MXene (Ti3C2Tx) but also
exhibits a rich porous structure, which leads to significantly
enhanced performance with respect to those using single-com-
ponent rGO or MXene. The piezoresistive sensor based on the
MX/rGO aerogel shows extremely high sensitivity (22.56 kPa−1),
fast response time (<200 ms), and good stability over 10 000
cycles. With the ability to capture pressure below 10 Pa, the
sensor can pick up heart pulses in adults. While microstruc-
tured and porous materials offer highly sensitive pressure
sensing, their fabrication still involves many steps and is costly
due to mold requirements. Thin metallic serpentine wires
offer the advantages of simple and low-cost fabrication pro-
cesses. By etching serpentine patterns with micro-scale widths
(3 µm) onto ultra-thin metal films (50 nm), Park et al.1 devel-
oped temperature-independent strain gauge sensors with a
Wheatstone full-bridge configuration that presented high sen-
sitivity and a linear response to applied pressures within the

Fig. 5 Typical configurations of flexible, wearable sensors, with (a–c)
microstructured materials, (d–e) hole patterns, and (f–g) sensor array
structures. (a) Flexible sensor based on conductive composite elasto-
mers with interlocked microdome-array structures. Scale bar: 5 μm.
Reproduced with permission.166 2014, ACS Publications. (b) Flexible
pressure sensor based on PDMS with porous-pyramid microstructures.
Reproduced with permission.126 2019, ACS Publications. (c) Flexible
piezoresistive sensor based on metal thin films with microwire patterns.
Reproduced with permission.1 2024, Springer Nature. (d) Flexible acous-
tic sensor with eight holes patterned around the rim of each diaphragm.
Reproduced with permission.167 2019, Springer Nature. (e) Flexible
acoustic sensor with holes patterned on the backplate. Reproduced with
permission.168 2022, Wiley-VCH. (f ) Active-matrix flexible pressure 6 × 6
sensor array. Reproduced with permission.173 2023, Wiley-VCH. (g)
Flexible sensor array based on integrated all-nanofiber networked elec-
trodes. Reproduced with permission.171 2022, Elsevier.
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range of 0–200 mmHg. Arranging two strain gauges above and
below the neutral axis of a polyimide film effectively cancels
out the influence of temperature fluctuations. Furthermore,
the full-bridge configuration exhibited significantly enhanced
sensitivity, achieving a pressure–voltage slope of 0.0031, which
is three times higher than that of a quarter-bridge configur-
ation of 0.0009.

Sensors with hole patterns. Capacitive flexible sensors based
on hole-patterned structures can improve the frequency range
and establish intimate contact with the skin. The sensors
consist of a low-stress bending membrane and a high-stress
perforated membrane. Holes added to the surface help
improve the acoustic sensitivity and frequency response
(Fig. 5d and e). An example of this approach is an ultrathin
(<5 µm), conformable vibration sensor introduced by Lee
et al.,167 based on hole-patterned diaphragm structures of
polymer film. The holes around the rim reduced the stiffness
of each diaphragm and the air damping underneath. The
design not only offers high sensitivity (5.5 V Pa−1) to sense
with human voice but also enables noise-canceling functional-
ity even in challenging acoustic environments. However, the
sensor is limited by its poor frequency response and a narrow
acoustic pressure range. The authors then employed SU8 for
the capacitive diaphragm structure, owing to its advantages of
high processability, relatively low Young’s modulus and dissi-
pation factor, and low curing temperature.168 The hole pat-
terns are utilized to the backplate to form a perforated struc-
ture with an open fraction area (44%) significantly reducing
the air damping. The SU8 sensor with a small footprint of less
than 9 mm2 achieved high sound-sensing quality, featuring a
flat frequency response (15–10 000 Hz), and high sensitivity
(22.4 mV Pa−1).

Sensor array configurations. The location of attachment is
critically important for targeting the signal of interest and
minimizing the influence of undesired acoustic sources. The
location usually requires expert knowledge to optimize the
sensor accuracy. Sensor arrays help improve the convenience
of sensor locating and installation onto human skin (Fig. 5f
and g). According to the readout method, matrix sensor arrays
can be classified into passive and active matrix arrays. In
passive arrays, electrodes are laid directly on the material,
while in active arrays, active components (e.g., transistors) are
tightly integrated with each pixel element.169 Generally,
passive arrays are easier to fabricate and can be used for wear-
able applications, such as tactile sensors.170,171 However, elec-
trical crosstalk may exist within the array, leading to inaccurate
measurement of the resistance. For body sound monitoring,
active arrays have been widely utilized including flexible thin
film transistors (TFTs).169 For example, Baek et al.172 intro-
duced the spatiotemporal measurements of arterial pulse
waves using wearable active-matrix pressure sensors. The pro-
posed active-matrix pressure sensor arrays consist of inkjet-
printed organic TFT arrays in a 10 × 10 active-matrix integrated
with piezoresistive sensor sheets. A high sensitivity of 16.8
kPa−1 was achieved with a low power consumption at 101 nW.
Another 6 × 6 capacitive sensor array based on the FEP-Air-FEP

sandwich structure was proposed by Han et al.173 to record
heart sounds at different locations of the chest area simul-
taneously, including the aortic, pulmonic, Erb’s point, tricus-
pid, and mitral regions. The device exhibits an excellent
dynamic sensitivity of 591 pC kPa−1 in the range of 0–8 kPa
with 600 Hz bandwidth, allowing for the capturing of heart,
breath, and Korotkoff sounds.

5. Fabrication technologies for
mechano-acoustic sensors

Fabrication techniques play a crucial role in determining the
feasibility of acoustic sensors for real-world and clinical appli-
cations, as they affect factors such as cost, efficiency, and
sensing performance. This section introduces the widely used
fabrication methods for mechano-acoustic sensors.

MEMS (micro-electro-mechanical systems) technique

MEMS technology serves as the industrial standard in the fab-
rication of acoustic sensors due to its mature processes, high
scalability, and ability to achieve small footprints, Fig. 6a.
MEMS processes are compatible with various sensing mecha-
nisms, including piezoresistive,76,77,151 capacitive,164,165 piezo-
electric effects.17,152 In wearable devices, where compactness is
critical, MEMS offers significant advantages by minimizing
the geometric mismatch between the rigid sensor platform
and the soft, stretchable surfaces of human organs and skin.
The fabrication of MEMS-based acoustic sensors typically
begins with defining the sensing structure, followed by metal-
lization to form electrical components, backside etching to
open the air cavities, oxide removal to release the sensing
structure, and finally bonding the microfabricated device to a
rigid substrate, such as glass, to create an enclosed chamber.

The materials commonly used in MEMS fabrication include
zinc oxide (ZnO), lead zirconate titanate (PZT),153 and silicon
(Si),76,77,151 with silicon being the most popular template due
to its availability, low cost, and compatibility with well-estab-
lished microfabrication processes. For instance, Nguyen
et al.76,77 developed a silicon acoustic sensor on an SOI
(Silicon-on-Insulator) wafer. The cantilever-based sensing
element was formed on a thin film Si (300 nm × 100 μm ×
100 μm) using ion implantation into 〈100〉 Si (Arsenic doped)
with a carrier concentration of approximately 1019 cm−3, and
diffusion depth of ∼100 nm. After that, metal layers (Au/Cr)
were deposited on the piezoresistive layer to create metal con-
tacts. The Si sensing element with electrodes was then formed
by wet-etching and Reactive Ion Etching (RIE), respectively.
The fabrication process continues with back-side lithography
followed by Si dry etching using Deep Reactive Ion Etching
(DRIE). Finally, the cantilever diaphragm is released using
vapor HF to remove the box oxide layer. The whole sensor,
with a small footprint of 1.5 × 1.5 mm, can be employed
for printed circuit boards (PCB) or flexible PCB by wire-
bonding technique for various applications of health
monitoring.76,151,174
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While Si devices are a preferred choice for wearable acoustic
sensors, they are often affected by temperature fluctuations
and light exposure, which can compromise their sensing per-
formance in extreme environments. To address these limit-
ations, wide-bandgap materials such as silicon carbide (SiC)
and gallium nitride (GaN) have been proposed, offering excel-
lent thermal stability and high optical transparency, making
them suitable for high-temperature applications and real-time
optical observations.

Mold casting technique

The use of master molds offers several advantages for fabrica-
tion of soft substrates, especially for microstructured PDMS
layers,117,175–179 Fig. 6b. These benefits include ease of custo-
mization for tailored product development, large-scale fabrica-
tion, and a significant reduction in material waste. This
method provides an efficient and sustainable pathway for pro-

ducing advanced sensing devices while maintaining flexibility
and adaptability in design.

There are several approaches to manufacturing microstruc-
tures for mold casting. One such approach relies on conven-
tional photolithography techniques to prepare a patterned
silicon template, with typically used structures such as micro-
pyramids117 and micropillars.175 Despite its advantage of high
accuracy, the manufacturing process of the technique is
usually complicated and time-consuming. The other approach
exploits natural existing biomaterials such as lotus
leaves176–178 to directly fabricate the microstructure arrays.
This approach is simple and cost-effective, however, it has a
significant limitation regarding the uniformity of the micro-
structures. In particular, their consistency in shape, dimen-
sions, and spacing cannot be freely controlled, as they are dic-
tated by the inherent properties of the natural biomaterial.121

3D printing techniques have also been utilized for mold
fabrication, offering numerous advantages including fast pro-

Fig. 6 Fabrication technologies for mechano-acoustic sensors. (a) MEMS technology. (b) Mold casting technology. Reproduced with permission.179

2020, MDPI. (c) Thermal drawing technology. Reproduced with permission.72 2023, Wiley-VCH. (d) Inkjet printing technique. Reproduced with per-
mission.172 2022, ACS Publications.
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totype production, ease of sensor structure customization,
reduced fabrication costs, and simplified manufacturing pro-
cesses.179 For example, Zhang et al.180 introduced a capacitive
soft pressure sensor with bonded microstructure interfaces.
The PDMS microstructured dielectric layers were formed by
mold casting technique using a 3D-printed mold. Specifically,
a resin template with microcone arrays (50 μm in diameter and
40 μm in height) was fabricated using high-precision 3D print-
ing (NanoArch S130, BMF Precision Tech, Inc.). A mixture of
PDMS base and curing agent (mass ratio 5 : 1) was then cast
onto the microcone array mold. The templated PDMS layer,
after curing at 80 °C for 30 minutes, was peeled off, serving as
a reverse template. This reverse template, again, can be used
to develop dielectric layers by mold casting method, with the
same micropatterns as the designed resin template. The mold
casting structure enables a contact-separation behavior at the
electrode–dielectric interface, resulting in an excellent detec-
tion limit of 0.007 Pa and a high-frequency range of up to 10
kHz.

Thermal drawing technique

Thermal drawing technique has emerged as a promising
method for fabricating innovative flexible and wearable
devices, Fig. 6c. This technique involves thermally stretching a
macroscale preform (where various functional materials are
strategically arranged) into a microscale fiber device with intri-
cate geometries and architectures. The process begins by
feeding the multimaterial macroscopic preform into a furnace,
where its constituent materials are heated to their softening or
melting points. After sufficient heating, the fiber is drawn
from the softened preform and undergoes controlled necking
to achieve a consistent diameter. This is accomplished
through the application of external forces, such as those
exerted by turning capstans. The thermal drawing technique
results in a down-scale fiber substrate, retaining the geometry,
composition, and cross-sectional structure of the original
preform but on a significantly reduced diameter. The product,
with a much higher aspect ratio, is tuned for both flexibility
and sensing effect compared to input substrates.

Among the materials employed in this process, PVDF-based
piezoelectric polymers stand out due to their lower processing
temperature and compatibility with the diverse materials used
in fiber devices. A such example was introduced by Yan
et al.,139 beginning with the construction of a macroscopic
preform consisting of P(VDF-TrFE) piezoelectric material (with
a relatively low melting point of 150 °C), loaded with BaTiO3

ceramic particles. Carbon-loaded polyethylene (CPE) was then
added as its high viscosity at the draw temperature delays the
onset of capillary instability of the low-viscosity crystalline
piezoelectric domain. The whole substrates are encapsulated
in an elastic poly(styrene-b-(ethylene-co-butylene)-b-styrene)
(SEBS) cladding. The preform was then thermally drawn into a
fiber in a three-zone vertical tube furnace with a top-zone
temperature of 120 °C, a middle-zone temperature of 252 °C,
and a bottom-zone temperature of 80 °C. During the drawing
process, four copper wires are introduced into the hollow

channels of the CPE, tuning conductivity across two length
scales: the microscale cross-section and the meter-scale fiber
length. Finally, tens of meters of sensing fiber were achieved
with submillimeter features.

Thermal drawing offers several advantages over traditional
fabrication methods, making it increasingly popular for produ-
cing advanced fiber-shaped piezoelectric acoustic sensors.
Notable benefits include single-step device fabrication, scalable
manufacturing, and compatibility with other techniques.72

Furthermore, these characteristics facilitate the creation of highly
complex, functional fibers in a streamlined manner. However,
the integration of diverse materials during thermal drawing
poses challenges due to differences in thermal, mechanical, and
chemical properties among the constituent materials. Such dis-
crepancies can lead to structural deformations or failures during
the drawing process. Addressing these issues requires careful
selection and compatibility assessments of materials to ensure
they maintain the intricate transverse structure and perform
cohesively throughout the process.181

Inkjet printing technique

In recent years, inkjet printing has garnered significant
research attention due to its versatility as a mask-free, non-
contact patterning technology, Fig. 6d. This method enables
the deposition of materials onto various substrates by pro-
gramming the motion of the printing nozzle such as polymer,
metal, carbon, and other 2D materials. Technically, the oper-
ation modes of inkjet printing can be classified into (1) drop-
on-demand (DoD) printing, which delivers droplets induced by
thermal bubbles or a piezoelectric actuator, and (2) continuous
inkjet (CIJ) printing, which generates a continuous ink stream
through a nozzle by the electrostatic or magnetic field.182 In
comparison, the DoD technique has been recognized with
several advantages, that it reduces the consumption of costly
ink materials owing to the micro-droplet deposition and
precise programmable patterning, making it a promising
method for flexible and wearable sensors fabrication. For
instance, Baek et al.172 proposed Inkjet-Printed thin-film tran-
sistor arrays integrated with piezoresistive sheets. Ag ink was
used to form transistor bottom-gate and word lines by inkjet-
printing technique, using a drop-on-demand inkjet printer
(DMP 2850, Fujifilm Dimatix). Ag nanoparticle ink (55 wt% Ag
nanoparticles) with an average diameter of 7 nm in tetrade-
cane was used to print using a single nozzle for a reliable
printing process. During printing, the cartridge and platen
temperatures were set at 40 °C and 50 °C, respectively. The
printed patterns were then sintered at 120 °C for 30 minutes to
form the sensor array layout.

Inkjet printing offers high manufacturing throughput, scal-
ability for large-area patterning, excellent biocompatibility,
and precise deposition capabilities on a wide variety of sub-
strates.182 It allows the flexibility to create geometries using
computer-aided design (CAD) digital patterns, and compatibil-
ity with a wide range of printable materials,183 offering
simpler and more innovative alternatives for producing flexible
PCBs compared to conventional methods.
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6. Health monitoring applications of
mechano-acoustic sensors

Cardiovascular monitoring

Blood flow measurements can be captured from several posi-
tions on the body, including fingertips76 (Fig. 7a),
wrist,78,86,126,186 and throat1 (Fig. 7b), providing vital infor-
mation for diagnosing cardiovascular diseases. Blood pressure
(BP) and flow velocity obtained from wearable acoustic trans-
ducers can reveal clinical insights into heart failure, carotid
stenosis, and renal failure.187 The most common technique to
measure blood pressure is the use of pressure cuffs with a
stethoscope. This technique, despite its high accuracy, is not
always convenient for the user and is not suitable for long-
term monitoring. Alternative approaches have been introduced
to overcome the limitations of pressure cuffs.

One of those methods is pulse wave velocity (PWV)
measurement, which is closely related to BP, and can be used
to estimate vascular stiffness and central arterial blood press-
ures through the Moens–Kortweg and Hughes equations.188

PWV can be calculated from pulse transit time (PTT), which
denotes the time for the carrying of pulse wave information by
a pulse signal from one location to another in the cardio-
vascular system. Guo et al.184 developed a small cuffless BP
measurement device using a piezoelectric sensor array to
measure the PWV. An optical sensor was attached to the arm
to measure the photoplethysmography (PPG) intensity ratio
(PIR) signal to estimate the arterial parameters of patients.
The proposed device showed a high BP estimation accuracy at
systolic blood pressure (SBP) was 0.75 ± 3.9, DBP was 1.1 ±
3.12, and mean arterial pressure (MAP) was 0.49 ± 2.82.

Another method employs a high correlation between the
amplitude of vessel expansion caused by blood pulse and
blood pressure. This approach simplifies the measurement
method and calculation procedure. For example, Min et al.185

proposed a wearable piezoelectric bracelet that can be attached
to the wrist for continuous blood pressure measuring (Fig. 6c).
To convert sensor output signals to BP values, the authors
used a linear transfer function. The device achieved accuracy
with a mean error and a standard deviation of −0.89 ± 6.19 for
SBP and −0.32 ± 5.28 mmHg for diastolic blood pressure
(DBP), respectively. To enhance user comfort, the Rogers
research group proposed a wireless, flexible device based on a
strain gauge Integrated Smart Sensor (3MIS) for blood pressure
estimation. A dimensionless factor k that depends on the
mechanical properties of the phantom skin is introduced to
convert the sensor output to BP values and is experimentally
acquired with a reference system.

As well as blood pressure and velocity, heart sounds are cri-
tically important signals for the assessment and monitoring of
potential heart diseases. The stethoscope is the major tool
used in clinical settings to obtain heart sounds. However, the
main limitations of traditional stethoscopes include the high
dependency on the clinical experience of doctors and the rigid
and bulky form factor that hamper their utility for long-term

and continuous medical assessments.189,190 Wearable sensors
worn on the chest wall offer long-term and convenient moni-
toring of heart sounds. S1 and S2 heart sounds with a fre-
quency range from 30–100 Hz (ref. 14 and 15) can be detected
clearly by acoustic sensors or accelerometers.9,10,141,142,163–165

Wireless-continuous auscultation using a soft wearable stetho-
scope system (SWS) was introduced by Lee et al.142 The device
utilizes commercial MEMS acoustic sensors integrated with a
Bluetooth circuit formed on a flexible PCB. The use of the flex-
ible PCB with a stretchable serpentine interconnect structure
minimizes the device thickness and facilitates conformal
attachment to the chest wall to capture cardiac signals with an
SNR of up to 14.8 dB. To further provide a more convenient
and comfortable monitoring condition, a T-shirt woven fabric
sensor capable of auscultating cardiac sound signals from the
chest of humans was reported.139 The information on the
cardiovascular system and heart sounds from users was
recorded by the acoustic shirt with an SNR as high as 30 dB.

Auscultation of the S3 heart sound is critical for cardio-
vascular monitoring; however, detecting S3 is particularly chal-
lenging for most acoustic transducers due to its low frequency
and weak amplitude. To address this, Gupta et al.164 developed
a precision wearable accelerometer-based contact microphone
capable of detecting pathological S3 heart sounds in patients
with preexisting conditions (Fig. 7e). The device not only cap-
tures the subtle S3 heart sound, which typically occurs approxi-
mately 150 ms after the S2 sound but also simultaneously
monitors shallow breathing patterns. This dual functionality
provides valuable diagnostic insights, with the S3 sound
serving as a key early marker for patients with reduced cardiac
output associated with congestive heart failure. In patients
with cardiovascular pathologies, murmurs are often present in
addition to signatures associated with S1 and S2. An acceler-
ometer-based epidermal mechano-acoustic sensor introduced
by Liu et al.7 showed the ability to capture murmur sounds in
cardiac valve closure and opening periods. The device can
detect the constant intensity of the murmuring sound from an
elderly female who was diagnosed with mild tricuspid and pul-
monary regurgitation. By integrating the accelerometer with a
pair of conformal capacitive electrodes laminated onto the
sternum, the device enables simultaneous measurements of
SCG (seismocardiography) and ECG. This dual functionality
allows for the concurrent capture of electrophysiological and
mechanical data for cardiac auscultation. The obtained data
provides insights into the heart motions involving electrical
signals followed by mechanical coupling and a sequence of
mechano-acoustic signatures as the heart chambers contract
and the valves close. Furthermore, the irregular beat rate was
presented in patients with similar diseases. The mummers
were absent at the aortic site, highlighting the importance of
changing recording positions during auscultation to ensure a
comprehensive diagnosis.7 To minimize inaccurate measure-
ments resulting from the location of wearable sensors, Han
et al.173 developed a 6 × 6 sensor array capable of simul-
taneously mapping heart sounds over a broad area of the
chest. This innovative platform can detect pulse waveforms
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corresponding to the pressure of the right atrium, right ventri-
cle, and pulmonary artery. The cardiac sound provides valu-
able information about the physiological activities of right
atrial contraction and relaxation, as well as the opening and

closing of the tricuspid valve. By allowing direct comparison of
sound volume and frequency across different locations, the
sensor array eliminates the need for frequent position changes
during auscultation. Table 4 shows the aforementioned appli-

Fig. 7 Applications of flexible, wearable mechano-acoustic sensors in cardiovascular monitoring. (a) Flexible, wearable mechano-acoustic sensors
for real-time monitoring of blood pulse at human fingertip. Reproduced with permission.76 2024, Wiley-VCH. (b) Soft, full Wheatstone bridge 3D
piezoresistive pressure sensors for blood pulse wave and blood pressure measurement at wrist and throat. Reproduced with permission.1 2024,
Springer Nature. (c) Wearable piezoelectric sensor for continuous blood pressure monitoring at the wrist. Reproduced with permission.185 2023,
Wiley-VCH. (d) Wearable piezoelectric sensor for cuffless blood pressure estimation at the wrist. Reproduced with permission.184 2022, MDPI. (e)
Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals from the chest
wall. Reproduced with permission.164 2020, Springer Nature. (f ) Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and
human-machine interfaces. Reproduced with permission.7 2016, Science.
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cations of mechano-acoustic sensors in cardiovascular moni-
toring and summarizes their key features and performance
indicators.

Pulmonary disease monitoring

Wearable acoustic sensors have emerged as a popular solution
for breath monitoring, providing real-time insights into respir-
atory health (Table 5). Breath analysis has been a cornerstone

in clinical diagnostics, providing valuable information on an
individual’s overall systemic health.193,194 The prevalence of
pulmonary and respiratory diseases, coupled with worsening
air quality in industrialized areas, underscores the growing
importance of advanced technologies for breath assessment.
In this context, wearable acoustic sensors integrated into
smart face masks and respirators have emerged as a popular
solution for breath monitoring, providing real-time insights

Table 4 Summary and comparison of wearable devices for cardiovascular monitoring

Device description Sensors Detectable signals Performance Ref.

Cuffless arterial compliance
sensor

Piezoelectric pressure
sensor

Blood pulse wave
velocity

Blood pressure measurement error: SBP (0.75 ±
3.9 mmHg), DBP (1.1 ± 3.12 mmHg), MAP (0.49 ±
2.82 mmHg)

184

Optical sensor PPG
Wearable piezoelectric blood-
pressure sensor

Flexible piezoelectric
pressure sensor

Blood pulse wave Sensitivity: 0.062 kPa−1 185
Blood pressure measurement error: SBP (−0.89 ±
6.19 mmHg), DBP (−0.32 ± 5.28 mmHg)

Soft, full wheatstone bridge 3D
pressure sensors

Piezoresistive
pressure sensor

Blood pulse wave Temperature-independent 1
Sensitivity: 0.0031 mmHg−1

Heart rate measurement error: 1.779 ± 1.96 bpm
Blood pressure measurement error: MAP (2.153 ±
1.96 mmHg)

Single fiber enables acoustic
fabrics via nanometer-scale
vibrations

Flexible piezoelectric
fiber sensor

Heart sound Minimum sound-detection capability: 0.002 Pa (40
dB)

139

Sensitivity: 19.6 mV measured at 94 dB and 1 kHz
Precision wearable
accelerometer contact
microphones

Capacitive MEMS
accelerometer

Heart sound, SCG, lung
sound, chest wall
motion

Bandwidth: <1 Hz to 12 kHz 164
Sensitivity: 76 mV g−1

Capability of capturing S3 heart sounds.
Epidermal mechano-acoustic
sensing electronics

Commercial MEMS
accelerometer

ECG, SCG Bandwidth: 0.5 Hz to 550 Hz 7
Capability of capturing heart murmur sounds
Speech recognition with 90% accuracy

Wearable piezoelectret patches Flexible piezoelectret
pressure sensor

Heart sound, Korotkoff
sound

Dynamic sensitivity of 591 pC kPa−1 in the pressure
range 0–8 kPa and 290 pC kPa−1 in the pressure
range above 8 kPa

173

Bandwidth: ∼0 Hz to 600 Hz with a frequency
resolution < 0.1 Hz

Table 5 Summary and comparison of wearable devices for pulmonary monitoring

Device description Sensors Detectable signals Performance Ref.

Smart face mask based on
an ultrathin pressure
sensor

Flexible piezoelectric
pressure sensor

Breath airflow signals Dynamic sensitivity of 0.19 V Pa−1 in the pressure
range 0–30 Pa and 0.048 V Pa−1 in the pressure range
above 30–145 Pa

191

Biodegradable smart face
masks

Flexible electret
pressure sensor

Breath airflow signals Sensitivity: linear response with applied pressure,
from 0.12 V at 4 Pa to 0.64 V at 166 Pa

192

Distinguishing the healthy group and three groups of
chronic respiratory diseases (asthma, bronchitis, and
chronic obstructive pulmonary disease) with 95.5%
accuracy

Precision accelerometer
contact microphones

Capacitive MEMS
accelerometer

Heart sound, SCG, lung
sound, chest wall
motion

Ultra-low noise performance (<10 μg √Hz−1) 165
Bandwidth: >10 kHz
Sensitivity: 271 mV g−1 with a linear response in accel-
eration range ±4 g
Capability of capturing wheeze, bronchial, and crackle
from COPD patients

Soft wearable stethoscope Commercial MEMS
microphone

Heart/lung sounds,
chest wall motion

Automated diagnoses of four types of lung diseases:
crackle, wheeze, stridor, and rhonchi, with a 95%
accuracy

142

Capability of detecting disordered breathing for home
sleep

Wireless broadband
acousto-mechanical
sensing system

Commercial MEMS
microphone/
accelerometer

Body movement/angle,
lung/intestinal/heart
sounds

Heart rate measurement error: 0.015 ± 0.85 bpm 9
Respiratory rate measurement error: 0.44 ± 2.13 bpm
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into respiratory health.191,192,195 For example, Zhong et al.191

introduced a wireless smart face mask that incorporates an
ultrathin, self-powered pressure sensor to monitor breathing
patterns (Fig. 8a). In this work, continuous wavelet transform
(CWT) was utilized to analyze and extract frequency and mag-
nitude parameters from various breathing conditions. The
system effectively distinguished abnormal breathing con-
ditions, such as coughing, fast breath, and holding breath.
Further advancements in this domain include the application
of machine learning for enhanced diagnostic capabilities. For
instance, Zhang et al.192 employed a bagged decision tree
algorithm with acoustic data from face mask sensors to classify
respiratory health conditions (Fig. 8b). Their approach
achieved a high accuracy of 95.5% in differentiating between
healthy individuals and patients with chronic respiratory dis-
eases, such as asthma, bronchitis, and chronic obstructive pul-
monary disease (COPD).

Another form of face mask is the respirator which offers air
filtering functionality to enhance breath quality. However, the
mismatch between dynamic environmental conditions and the

static design of nonadaptive respirators often results in physio-
logical and psychological discomfort, limiting their wide-
spread adoption. To address this limitation, Shin et al.200 pro-
posed an adaptive respiratory protection system featuring a
dynamic air filter (DAF). This system integrates a digital bar-
ometer inside the face mask to capture the wearer’s breathing
signals. These signals, combined with the expansion state of
the DAF, are processed using a long short-term memory
(LSTM) algorithm to predict changes in the wearer’s respirat-
ory patterns. The inference result, along with ambient con-
dition data recorded from a particulate matter (PM) sensor, is
used to adjust a stretchable elastic fiber membrane (EFM) air
filter to the desired state, optimizing filtration in real time.
While several approaches have been developed to enhance the
stability and comfort of wearing face masks,194,200 it is some-
times inconvenient in routine activities and susceptible to
noise for pulmonary monitoring purposes. For instance, the
deformation of the masks, and vocal noise may impact
sensing accuracy. The application of wearable electronic
stethoscopes that can be comfortably attached to the chest

Fig. 8 Applications of flexible, wearable mechano-acoustic sensors in pulmonary disease monitoring. (a) Smart face mask based on an ultrathin
pressure sensor for wireless monitoring of breath conditions. Reproduced with permission.191 2022, Wiley-VCH. (b) Biodegradable smart face masks
based on PLA electret fabric for chronic respiratory disease diagnosis. Reproduced with permission.192 2022, ACS Publications. (c) Soft wearable
stethoscope designed for automated pulmonary disease diagnosis. Reproduced with permission.142 2022, Science. (d) Precision accelerometer
contact microphones for Detection of pathological mechano-acoustic signatures in patients with pulmonary disorders. Reproduced with per-
mission.164 2020, Springer Nature. (e) Wireless broadband acousto-mechanical sensing system for continuous physiological monitoring. Reproduced
with permission.222 2023, Elsevier.
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serves as a novel approach for detecting and diagnosing respir-
atory disorders. For instance, the ACM platform reported by
Gupta et al.164 offers a broad measurement bandwidth from
below 1 Hz up to 12 kHz allowing the sensor to capture low-fre-
quency chest wall motion and high-frequency lung sounds.
The incorporation of these signals helps elucidate the respirat-
ory rate and breathing patterns, that can potentially predict
early onset of chronic cardiopulmonary conditions. In
addition to breathing patterns, abnormal breath sounds such
as wheezes, rhonchi, and crackles serve as useful indicators of
pulmonary disorders. The same research group further utilized
their ACM devices using a single integrated sensor for episodic
and longitudinal assessment of lung sounds, breathing pat-
terns, and respiratory rates.165 The device demonstrated its
capability to capture wheeze, bronchial, and crackle sounds
with comparable results to an Eko stethoscope. In addition to
data quality, the implementation of machine learning to the
dataset obtained from wearable stethoscopes can support the
interpretation of pulmonary disease diagnoses. Lee et al. pro-
posed a soft wearable stethoscope (SWS) with CNN-based
machine learning, embedded in the SWS for Chronic obstruc-
tive pulmonary disease (COPD) and cardiovascular disease
(CVD) auscultation142 (Fig. 8c). A clinical study with multiple
patients and control subjects demonstrates the unique advan-
tage of the wearable auscultation method with embedded
machine learning for automated diagnoses of four types of
lung diseases: crackle, wheeze, stridor, and rhonchi, with
94.78% accuracy. Displaying the measured signals on a mobile
app, combined with the abnormal signal detection algorithm
suggests the feasibility of wearable stethoscopes for remote
sensing applications.

Airflow based on lung sound also provides valuable infor-
mation on lung conditions. In this regard, the Rogers group9

conducted a pilot study involving 13 broadband acoustic-
mechanical sensing (BAMS) devices mounted on the anterior

and posterior chest of 20 healthy participants and 35 patients
with chronic lung disease, creating a high-resolution, spatio-
temporal mapping of the lung (Fig. 8e). The measurement
indicated that patients with a history of resection surgery of
the right upper and lower lobes and left upper lobes, showed
decreased pulmonary function in the removed lobes, resulting
in reduced airflow rates and lower sound intensity. The study
also reported differences in lung sound intensities and fre-
quencies between healthy subjects and patients with chronic
lung disease: 54 dB compared with ∼36 dB and 219 Hz com-
pared with 256 Hz, respectively.

Sleep monitoring

Sleep monitoring has been a highly active research area to
improve the quality of life. Sleep quality can be evaluated by
monitoring sleep breathing and sleep stage estimation. The
cyclical pattern of sleep is composed of a rapid eye movement
(REM) and a non-REM (NREM) phase. The NREM phase is
generally divided into four different stages, namely, Stage 1,
Stage 2, Stage 3, and Stage 4. Knowledge of these stages allows
further inference of new variables. In a typical clinical setting,
polysomnography (PSG) is considered the gold-standard device
to characterize human sleep that infers the different sleep
stages and represents an indirect measure of sleep.
Unfortunately, this technique is expensive and requires super-
vision by a medical doctor during the measurement.

The use of mechano-acoustic devices to quantify sleep pat-
terns represents a promising solution in advanced clinical
diagnostics (Table 6). Body sounds and movements play an
important role and are widely used in sleep stage
estimation.5,196,198,199,201–203 A widely adopted method involves
extracting cardiovascular and body motion signals using
mechano-acoustic sensors placed on the skin. These sensors
collect data that, when processed with machine learning algor-
ithms, can be used to estimate sleep stages accurately. For

Table 6 Summary and comparison of wearable devices for sleep stage detection

Device description Sensors Detectable signals Sleep detection accuracy Ref.

Soft wireless device placed
at the suprasternal notch

MEMS accelerometer Mechano-acoustic signals Wake detection: 72.7% 5
NREM detection: 65%
REM detection: 56.3%
Three-stage detection: 56%

Soft, wireless sternal patch Optical sensor, MEMS
accelerometer, ECG sensor

ECG, PPG, SCG, and ACC Wake detection: 100% 196
NREM detection: 80.9%
REM detection: 70.4%
Three-stage detection: 82.4%

Rigid wristwatch Optical sensor, MEMS accelerometer ACC and PPG Wake detection: 91.5% 197
NREM detection: 65.7%
REM detection: 78.9%
Three-stage detection: 72.9%

Wrist-worn device Optical sensor, MEMS accelerometer ACC and PPG Wake detection: 69.3% 198
NREM detection: 83.4%
REM detection: 71.6%
Three-stage detection: 69%

Flexible, wireless patch MEMS accelerometer, ECG,
and temperature sensor

ACC, ECG, and TEMP Wake detection: 73.3% 199
NREM detection: 59%
REM detection: 56%
Three-stage detection: 62.1%
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example, Lee et al.5 proposed an approach in which a multi-
band z-axis signal from an accelerometer was utilized to
extract and collect body signals from the human chest
(Fig. 9a). Specifically, the frequency range 0.1–0.8 Hz was
extracted for chest motion during respiration, sub-bands
between 0.8–20 Hz captured body motions, and the 20–80 Hz
range represented cardiac signals. The study employed a
hidden Markov model (HMM) to classify sleep stages, achiev-
ing an 82% accuracy for binary wake/asleep detection and 56%
accuracy for three-stage classification. To enhance the accuracy
of sleep stage estimation, mechano-acoustic sensors have been
incorporated with ECG and PPG systems. Typically, acceler-
ometers are worn on the wrist to monitor body movements
during sleep, while ECG and PPG are used to capture cardio-
vascular signals. This integration resulted in an enhancement
in three-stage detection accuracy of 69% and 72.9% as
reported by Beattie et al.198 and Fonseca et al.,197 respectively.
A soft, wireless highly integrated device with ECG, PPG, and
accelerometers was introduced by Zavanelli et al.196 (Fig. 9b).

To estimate the sleep stage, in addition to ECG and PPG
signals, SCG vibrations are recorded from the y accelerometers.
These signals were sampled at rates of 500 Hz, 120 Hz, and
200 Hz and filtered using a third-order Butterworth band-pass
filter set to 4–24 Hz for SCG, 0.5–50 Hz for ECG, and 0.3–7 Hz
for PPG. A feedforward neural network (FFNN) was trained on
the processed data, achieving a high three-stage classification
accuracy of 82.4%.

Sleep apnea is a sleep disorder in which breathing stops
and starts repeatedly during sleep, and is often related to
snoring, which is linked with other respiratory symptoms,
such as wheezing and chronic bronchitis. Those with asthma
and sleep-disordered breathing have impacted sleep quality
and decreased nocturnal oxygen saturation. Wearable sensors
have emerged as valuable tools for detecting these patterns
and facilitating early screening and treatment.9,142,165,196,202

For apnea and other abnormal sleep breathing situation detec-
tion, the sensor location at the suprasternal or the chest wall is
preferred as it is convenient to capture both airflow, respir-

Fig. 9 Applications of flexible, wearable mechano-acoustic sensors in sleep monitoring. (a) Mechano-acoustic sensors placed at the suprasternal
notch for physiological processes and sleep stage estimation. Reproduced with permission.72 2023, Wiley-VCH. (b) Soft, wireless sternal patches for
detection of sleep apnea and sleep stages. Reproduced with permission.196 2021, Science.
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ation sound, and chest movements, which are considered
important signs of these sleep disorders. High-sensitivity
accelerometers are particularly suitable for this application, as
their low-frequency signals can detect body motions, while
their high-frequency sensitivity captures sounds generated by
airflow through the trachea. Gupta et al.165 introduced an
approach utilizing an accelerometer contact microphone
attached to the lung area to monitor breathing patterns. Their
study identified the characteristic Cheyne-Stokes respiration
pattern in patients with acute decompensated heart failure
(ADHF), a condition commonly observed in advanced heart
failure. This pathognomonic breathing pattern features cyclical
periods of rapid breaths followed by an absence of respiratory
signals, indicative of apnea. In another study, Lee et al.142

used a digital stethoscope to record lung sounds, visualized as
spectrograms, to analyze apnea/hypopnea events and differen-
tiate types of snoring. The frequency spectrum of lung sounds
revealed distinct patterns of snoring, such as tongue snoring
and palatal snoring. Tongue snoring during inhalation exhibi-
ted a frequency range with power concentrated between below
500 Hz, accompanied by distinct peaks from 500 Hz to 1 kHz,
with a noticeable reduction in signal power during exhalation.
In contrast, tongue snoring during exhalation displayed a
gradual increase in signal power up to 250 Hz, with distinct
signal peaks observed. Palatal snoring during inhalation pre-
sented a similar power distribution across the frequency spec-
trum, except for a unique pattern between 350 and 400 Hz.
These detailed analyses provide crucial insights into the respir-
atory dynamics associated with sleep-disordered breathing.

Bowel monitoring

Bowel sounds provide valuable physiological insights into
intestinal function. However, despite their regular production,
the random frequency and variability of these sounds pose
challenges for continuous monitoring using conventional
devices like stethoscopes due to their bulkiness. Advanced
wearable devices for bowel sound monitoring, on the other
hand, can provide real-time information on abdominal and
intestinal activities. Numerous studies have been conducted to
capture bowel sound62,204–207 highlighting the significant
advantages of wearable devices (Table 7). For example, Zhou
et al.62 proposed a graphene-based strain sensor with a sand-

wiched structure, which is tailored to harvesting bowel sounds
(Fig. 10a). To avoid interference from heart sounds and
abdominal aortic pulsations and optimize bowel sounds, the
ileocecal region was selected to be measured. By assuming
that bowel sounds are typically characterized by a considerable
variation in frequency sound and tone, this study provided a
new way to determine the functional condition of the intes-
tine. However, more data needs to be collected to continue to
revise the reference ranges of the minimum and difference
values of bowel sound amplitude. Machine learning offers an
efficient solution for detecting and analyzing bowel sounds,
enabling more effective data collection and interpretation.
Examples of machine learning for bowel sound recognition
include a CNN-based segmentation approach reported by Zhao
et al.204 and, SVM classification developed by Yin et al.205 Both
methods demonstrated impressive performance, achieving
accuracy rates exceeding 90% (Fig. 10b). In attempts to
improve patient comfort, Baronetto et al.63 proposed the
Gastro Digital Shirt, a smart T-shirt for capturing abdominal
sounds produced during digestion. The garment prototype fea-
tured an array of eight miniaturized microphones connected
to a low-power wearable computer and was designed for long-
term recording. Using a large dataset including 3046 bowel
sound instances, which were individually annotated, and the
Hierarchical Agglomerative Clustering algorithm, the analysis
highlighted the presence of four bowel sound types based on
their spectral and temporal features. The study showed that
the most frequently occurring types belong to two clusters,
containing both single and multiple bursts (SB and MB). A
survey on people with different intestinal conditions70 was con-
ducted on healthy male subjects together with patients with
mechanical intestinal obstruction (MIO) and with paralytic
ileus, Fig. 10c. A 5-hour measurement of bowel sounds after
food intake in a silent room revealed that MIO patients exhibit
the highest number of peaks (233 peaks), much higher than
that of patients with the paralytic ileus traces (22 peaks). There
are also significant differences in peak values and positions in
their power envelope curves.

One of the most important clinical applications of bowel
sound monitoring is to capture the occurrence frequency of
bowel from patients with postoperative ileus (POI). This assists
the recovery of patients’ intestinal function, selects the right

Table 7 Summary and comparison of wearable devices for bowel monitoring

Device description Applications Performance Ref

Wearable devices for long-term
bowel sound monitoring

Bowel sound
recognition

Bowel sound recognition with 97.0% sensitivity and 91.7% accuracy 204

Wearable health monitoring system
for bowel sound recognition

Bowel sound
recognition

Bowel sound recognition with 86.8% sensitivity and 90.1% accuracy 205

Smart shirt for digestion acoustics
monitoring

Bowel sound
recognition

Detection of the presence of four bowel sound types based on their
spectral and temporal features, with Cohen’s Kappa of 0.7

63

Flexible skin-mounted wireless
acoustic device

Intestinal condition
monitoring

Bowel sound classification between the normal subject and patients with
MIO or paralytic ileus with 76.89% accuracy

70

Flexible dual-channel digital
auscultation patch

Intestinal condition
monitoring

Evaluated the recovery of intestinal peristalsis function in patients with
POI and provided guidelines for the feeding time for speeding recovery
based on intestinal rate

143
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feeding time, and accelerates the recovery of patients. POI is a
common physiological response to abdominal surgery, charac-
terized by symptoms such as the cessation of intestinal peri-
stalsis and the inability to move intestinal contents forward.
During POI, patients are unable to consume food until the
condition resolves. The traditional judgment of the time of
POI relief relies on the doctor to observe when the patient
begins to exhaust or defecate. This method is intermittent and
depends on the subjective auscultation from physicians.
Affected by the noisy environment in the ward, this evaluation
can be considered inaccurate and hysteretic. This limitation
can be addressed by the use of long-term wearable devices. As
such, a dual-channel digital auscultation patch introduced by
Wang et al.143 was attached to the abdomen of patients with
POI to capture bowel sounds after surgery. The ambient noise
in the ward is eliminated using an active noise-reduction algor-
ithm, while the other noise sources, such as frictional noise,
are removed using multichannel cross-validation. Through
this approach, the number of bowel sounds contained in the
data collected daily is objectively and quantitatively identified.

According to the daily change in occurrence frequency, the
curve of the median intestinal rate with the postoperative days
can be collected and analyzed. From one to three days after
the operation, the intestines were in a state of paralysis, and
the bowel almost disappeared, less than two times per minute
on average, for long-term monitoring. On the fourth day after
the operation, the occurrence frequency of bowel sounds
began to increase, reaching five times per minute, which was
more than the average level of two times per minute in the

normal state. The results obtained from the wearable acoustic
sensors indicated that the paralyzed state of the intestine is
relieved, and the peristalsis function is restored. The study
also suggested that timely feeding from the fourth day after
the operation could speed up the patient’s recovery.

Swallow monitoring

Mechano-acoustic sensors have been utilized as non-invasive
approaches for monitoring and capturing swallowing patterns
(Table 8). Surface electromyography (sEMG) is a preferred non-
invasive method for health assessment in clinical settings but
still faces challenges. When used alone, sEMG is limited in the
types of activities it can monitor. For example, sEMG monitors
the electrical activity of muscles when they are actively con-
tracting, but the relaxation of the swallowing muscles cannot
be monitored.57 To address these limitations, an alternative
approach involves the use of sEMG and strain sensors.
Continuous sensing of mechanical strain on the surface of the
skin can capture the contractions and relaxations of the sub-
mental muscles during swallowing, helping improve the per-
formance of wearable devices in swallowing assessments.

Assessment of liquid intake is necessary and provides valu-
able information on an individual’s hydration status. In this
regard, the swallowed volume can be estimated by recording
swallowing signals at the throat.55–57 Polat et al.,56 for instance,
introduced an external measurement of swallowing volume
during exercise using a wearable sensor based on piezoresis-
tive Gr/AuNI/PEDOT:PSS “dough” strain gauge and sEMG
attached to the throat (Fig. 11a). The study tested volumes

Fig. 10 Applications of flexible, wearable mechano-acoustic sensors in sleep monitoring. (a) Graphene-based strain sensor with sandwich structure
for bowel sounds monitoring.62 2022, RSC Publications. (b) Flexible skin-mounted wireless acoustic devices for bowel sounds monitoring and intes-
tinal condition evaluation. Reproduced with permission.223 2020, Springer Nature.
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between 10–30 ml in 5 ml increments on participants walking
or sitting on their exercise instruments while completing their
exercises for swallow therapy. Machine learning was also
applied to predict the liquid intake volume based on the
sensor data. From the sEMG signals, summation, width, and
low-frequency power were extracted while the peak-to-peak

width and peak skew were derived from the strain signals.
Meanwhile, the peak offset was taken between the sEMG and
the strain. The prediction results for walking were significantly
better than for biking, with the prediction error ranging from
30–50% compared to 25–65%, respectively. The data implies
that the intensity of human routine activities has a marked

Table 8 Summary and comparison of wearable devices for swallow monitoring

Device description
Swallow monitoring
applications Sensors

Detectable
signals Results Ref

Stretchable derivatives
of PEDOT:PSS,
graphene, metallic
nanoparticles

External measurement of
swallowed volume during
exercise

Flexible piezoresistive
strain gauge sensor,
sEMG sensor

sEMG, throat
movement

The prediction results for walking were
significantly better than for biking,
with the prediction error ranging from
30–50% compared to 25–65%,
respectively

56

Metallic nanoislands on
graphene

Swallow monitoring in head
and neck cancer patients

Flexible piezoresistive
strain gauge sensor

Throat
movement

Bolus type identification (water bolus,
yogurt bolus, and cracker bolus) with
86.4% accuracy

57

Swallow classification between healthy
subject and dysphagic patient with
94.7% accuracy

Soft skin-interfaced
mechano-acoustic
sensors

Real-time monitoring and
patient feedback on
respiratory and swallowing
biomechanics

MEMS accelerometer Chest wall
motion

Detection of swallow events while
eating, drinking, and intermittent un-
cued saliva swallowing with 89.6%
sensitivity and 87.8% precision

6

Throat
movement

Epidermal graphene
sensors

Estimating swallowed
volume

Flexible piezoresistive
strain gauge sensor

Throat
movement

Estimation of unknown swallowed
volumes cumulatively between 5 and
30 ml of water with 92% accuracy

55

Fig. 11 Applications of flexible, wearable mechano-acoustic sensors in swallowing monitoring. (a) Stretchable sensor based on PEDOT:PSS, gra-
phene, metallic nanoparticles for measuring of swallowed volume during exercise. Reproduced with permission.56 2023, Wiley-VCH. (b) Epidermal
graphene sensors for estimation of swallowed volume. Reproduced with permission.55 2021, ACS Publications. (c) Soft skin-interfaced mechano-
acoustic sensors for real-time monitoring and patient feedback on respiratory and swallowing biomechanics. Reproduced with permission.6 2022,
Springer Nature.
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impact on the estimation. Additionally, the results highlighted
a larger error in predicting the smallest volume (10 ml) com-
pared to the volumes of inter-mediate size (15, 20, and 25 ml),
which was also witnessed in their previous study testing on
participants sitting still55 (Fig. 11b). This error could be attrib-
uted to the premature and involuntary movement of the liquid
bolus from the oral cavity into the pharynx that occurs before
swallowing smaller volumes causing swallow disruptions.

Furthermore, there are ongoing attempts to use strain
sensors to identify and monitor Parkinson’s disease and dys-
phagia in patients. Tracking swallowing activities in patients
and their response to different types and volumes of food
reveals valuable information for clinical treatment. For
example, Kim et al.208 introduced a flexible submental sensor
patch with remote monitoring controls for the management of
oropharyngeal swallowing disorders. This sensor patch was
optimally designed to enable the accurate recording of sub-
mental muscle activity, including burst duration and ampli-
tude, during swallowing for dysphagia patients under treat-
ment. Another study by Ramírez et al.57 developed a smart
patch for monitoring swallowing activity in head and neck
cancer patients. By employing machine learning, the system
achieved a high accuracy at 86.4% by cross-validation in classi-
fying three types of foods: water bolus, yogurt bolus, and
cracker bolus. Moreover, the system presented an ability in
early auscultation of dysphagia with a high level of accuracy of
94.7%.

Besides detecting, advanced wearable sensors are also
capable of assisting in therapeutic treatments for dysphagia.
Technically, these treatments often include interventions by
speech-language pathologists designed to improve the physi-
ology of the swallowing mechanism by training patients to
initiate swallowing with sufficient frequency and during the
expiratory phase of the breathing cycle (exhale/swallow/exhale).
These therapeutic treatments currently necessitate bulky,
expensive equipment to synchronously record swallows and
respirations, confined to use in clinical settings. In an attempt
to overcome these challenges, Kang et al.6 introduced a wire-
less, wearable technology that enables continuous, mechano-
acoustic tracking of respiratory activities and swallows through
movements and vibratory processes monitored at the skin
surface (Fig. 11c). Two separated accelerometers were attached
to the suprasternal notch and laryngeal prominence to capture
respiration and swallowing signals. The respiratory-swallow
phase pattern was then recorded and compared with the
optimal pattern, then alert patients via a haptic feedback
patch attached to their arms.

7. Conclusion and perspectives

Driven by the growing demand for comprehensive health
assessments, flexible wearable mechano-acoustic sensors have
seen significant advancements in addressing the limitations of
traditional bulky equipment. These innovations offer a new
approach for long-term, ambulatory monitoring and objective

assessment of body sounds, enhancing both functionality and
user comfort. The development of miniature MEMS acoustic
sensors with footprints of a few milometers represents a sig-
nificant breakthrough, enabling compact and powerful
sensing capabilities for capturing body sounds. These sensors
can be integrated into the flexible circuit boards, forming
wearable devices with dimensions of just a few square centi-
meters. Such designs are lightweight and conformal, making
them ideal for comfortable, unobtrusive wear. The introduc-
tion of fully flexible sensors has further improved wearing
comfort and minimized motion artifacts, ensuring more accu-
rate measurements. Some of them are tailored to be bio-
degradable,209 gas-permeable and transparent,210 reducing
skin irritation and discomfort associated with prolonged use.
These features are particularly suitable for continuous health
monitoring over extended periods. Liquid metals (LM), such as
Eutectic Gallium-Indium (EGaIn), are highly promising
materials for soft electronics due to their unique and versatile
properties such as exceptional conformability, biocompatibil-
ity, permeability, self-healing capability, and recyclability.211

Such properties enable the application of LM-based materials
in various areas, including radio frequency electronics and soft
circuit connections for flexible, wearable devices.

Regarding materials and designs, silicon MEMS micro-
phones and acceleration sensors exhibit a high technological
readiness level (TRL) due to their mature manufacturing capa-
bilities, worldwide availability, and well-established sensing
mechanisms. The use of these MEMS microphones as surface-
mount devices (SMDs) facilitates integration with the fPCBs
through automated pick-and-place tools and chip bonding
processes. However, a limitation of MEMS microphones is
their rigidity, which may compromise the mechanical flexi-
bility of wearable acoustic devices and induce artifact signals
due to differences in the mechanical properties of tissues and
electronics. A potential solution to this issue is the implemen-
tation of a transfer-printing process to create flexible inorganic
acoustic sensors on polymeric substrates, as demonstrated in
recent work by Yang et al.212 This approach enhances device
compliance and integration with human skin. Another draw-
back of existing MEMS sensors is their narrow measurement
range. For instance, commercially available MEMS micro-
phones typically have a cut-off frequency of 35 Hz,142 which
hinders the detection of low-frequency body sounds. A pro-
posed solution involves combining MEMS microphones with
acceleration sensors which are sensitive to low frequencies.
However, this approach may increase the system footprint and
cost due to the need for multiple devices, additional metal
interconnects, and extra SMD components for associated
amplification circuits. The development of monolithic
sensors, such as cantilevers capable of detecting a broad range
of frequencies, represents an exciting research direction to
address this limitation. An alternative to inorganic semi-
conductor-based sensors is the use of conductive polymers for
body sound detection. Their intrinsic mechanical stretchabil-
ity, combined with the ability to engineer sensitivity and
measurement range, is expected to enhance device perform-
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ance. However, compared to Si-based devices, scalable manu-
facturing of polymeric sensors poses a significant challenge.
High-yield fabrication processes such as inkjet or 3D printing
are potential solutions to this problem. In addition to scalable
manufacturing, another key technological issue is the develop-
ment of stretchable circuits for polymeric sensors. In many
cases, mechanical failure occurs at the interface between the
soft sensor and the fPCBs due to significant differences in
material properties. Developing fully stretchable devices using
polymeric materials thus remains a critical research question
to realize the unique potential of this class of materials.

Power management is another critical aspect of wearable
technology. Multi-modal sensing and long-term operation
demand higher energy capacities, which often result in
increased battery size and weight. Larger batteries can compro-
mise the overall device dimensions, reduce wearing comfort,
and may influence the epidermal vibration under sound
pressure and hence impact the measurement accuracy.
Lithium-ion polymer (LiPo) batteries have been the mainstream
power source for supporting intermittent sound measurements
over several days. Despite advancements in battery technology,
they remain one of the largest components in wearable acoustic
systems, contributing to increased device size and weight. For
applications such as sleep quality monitoring where acoustic
sensors are directly attached to the nose or integrated into a
facemask, minimizing device size and weight is crucial to
enhance user comfort and prevent sleep interference. To
address this challenge, wireless charging using NFC has
emerged as a promising solution due to its biocompatibility
and safety. In controlled environments such as hospitals, wire-
less power transmission systems can be installed beneath
patient beds to continuously power wearable devices. This
approach eliminates the need for bulky batteries, significantly
reducing device size and weight while enabling long-term, unin-
terrupted use. However, the short communication range of NFC
limits user mobility. Perhaps an ultimate solution could involve
the development of energy-harvesting devices capable of collect-
ing energy from the human body (e.g., using piezoelectric
materials to harness body motion) or the surrounding environ-
ment (e.g., outdoor and indoor illumination). A recent study by
the Gao group213 demonstrated the use of flexible solar panels
to convert photoenergy from indoor illumination into electrical
power for wearable chemical sensors. Similar concepts can be
adapted to meet the power demands of wearable mechano-
acoustic sensors. Enzymatic biofuel cells (EBFCs), utilizing
physiological glucose or lactate as fuels to convert chemical
energy into electrical energy, represent a promising alternative
power source. The chemical energy harnessed by EBFCs can be
sourced from abundant biofuels found in human body fluids,
such as sweat, tears, blood, and saliva.214,215 These biofuels are
renewable and can provide a power supply of up to 100 W,
meeting the power demands of low-energy bioelectronics,
which typically range from 200 μW to 1 W.216,217 Compared to
other energy harvesters that rely on solar or biomechanical
energy, EBFCs offer distinct advantages. These include continu-
ous power generation, biocompatible interfaces free from toxic

materials, a simple configuration that eliminates the need for
additional packaging, and biodegradability, making them a
highly attractive solution for powering wearable and implanta-
ble bioelectronic devices.

In addition to power management, data transmission pre-
sents a significant challenge in the system-level integration of
wireless devices. Various wireless communication methods,
including NFC, RFID, Wi-Fi, and Bluetooth, have been intro-
duced, providing several advantages such as tether-free con-
figuration, ease of use, and reduced motion artifacts. Among
the techniques, NFC and RFID stand out as battery-free tech-
niques, but their transmission rates are relatively low. NFC is
known for its high security and convenient connection but is
constrained by a limited range (≈5–20 cm) and low-sampling
rate data transmission. As a result, NFC is better suited for on-
demand measurements rather than continuous monitoring of
body sounds such as intermittent blood pressure measure-
ment.218 In contrast, RFID enables real-time wireless data
exchange via electromagnetic waves, allowing real-time
measurement of body signals. However, the operational range
of RFID is limited, and its transmission stability is affected by
geometry variations between the reader and devices, restricting
its application in flexible wearable devices. To overcome these
limitations, Wi-Fi and Bluetooth have been explored for data
acquisition and transmission through RF (radio frequency)
signals. Wi-Fi offers a long wireless transfer range of up to
70 m, a high transmission rate, and has been used in appli-
cations like respiration and heart rate monitoring.219 However,
due to the wireless transmission of data over relatively long
distances, Wi-Fi communication typically requires high power
consumption,220 limiting its suitability for long-term wearable
devices. Conversely, Bluetooth, with a transfer range of about
30 m, offers 30% less power consumption compared to Wi-Fi,
while maintaining a stable connection between wearable
devices to nearby user interfaces or processing centers,
making it more practical for wearable applications. Bluetooth
Low Energy (BLE), a power-efficient version of Bluetooth, has
been introduced focusing on minimal energy consumption by
sacrificing data rate. This allows BLE transmission on battery-
operated devices that need to operate on minimal power and
only send small sets of data. To address the data rate limit-
ations in BLE, recent studies have incorporated external
memory into wearable devices, enabling high sample-rate
recording and data transmission periodically. The reduction of
transfer frequency cuts power consumption by up to 60%8 that
can support continuous monitoring on a single device for over
24 hours with a small lithium–polymer battery,8,9,221 present-
ing a promising solution for data transmission for wireless,
wearable mechano-acoustic sensors.

Acoustic sensors are sensitive not only to body sounds but
also to acoustic noise from surrounding environments and
human motion. Ensuring high-quality signals is imperative for
precise and reliable diagnosis. Several devices, including acous-
tic and pressure patches, have demonstrated their capability for
continuous measurement of heart pulse, blood pressure, and
bowel sounds. However, most measurements require users to
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maintain a stable posture, and the influence of body movement
on recorded data has not been fully addressed. Integrating
multimodal sensors, such as acceleration and motion sensors,
could help minimize or cancel artifact signals caused by body
movement. This approach could also facilitate measurements
during dynamic activities, including sports, thereby expanding
the applications of acoustic sensors beyond healthcare to high-
performance sports. In addition, the application of machine
learning to detect artifact signals and recognize distinctive
sound patterns from different parts of the human body can
underpin reliable measurement and diagnosis. The use of
machine learning and artificial intelligence (AI) in wearable
acoustic sensors to obtain and interpret meaningful body
sounds is expected to be a highly active area of research in the
coming years. Advancements in software development also
facilitate data sharing and access for home-based monitoring
and telehealth but simultaneously raise concerns regarding
security and privacy. Further efforts involving the development
of wearable acoustic sensors, user education, and ethical con-
siderations are critically important for deploying AI in wearable
acoustic devices and other medical applications.
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