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Electromigration-driven linear actuator operations
i this: Nomoscsle o, 2025 7,754 of Co nanorods inside and outside multi-walled
carbon nanotubes with stroke of tens of
nanometerst

{ ") Check for updates ‘
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Solid Co nanorod fillers were pushed out of multi-walled carbon nanotubes via electromigration and their

behaviors were observed in situ by transmission electron microscopy. When a solid Co nanorod was pushed
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Accepted 2nd Decernber 2024 out, the portion outside the nanotube increased in diameter. The behavior of the plastic deformation
depended on the crystal orientation of the Co nanorod filler. When the direction of the electron flow

DOI: 10.1039/d4na00766b was reversed, the Co nanorod was pulled into the host nanotube. In one trial, the Co nanorod was split
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1 Introduction

For the development of nanoscale mechanical machines™* and
nano-mechanics,** methods for the functional manipulation of
nano-objects and the precise control of their motion are
necessary. Various physical phenomena have been utilized to
manipulate nano-objects, such as electric forces,>® bond length
changes,” thermal volume changes,*® thermomigration,'*** the
capillary effect,’>***® and electromigration.'®”** Although
thermal volume changes are reversible, they are unsuitable for
long-stroke manipulation. It is very difficult to use the capillary
effect for reversible motion. For reversible thermomigration, it
is necessary to precisely control the temperature distribution.
Electric forces can be used for reversible motion, but well-
aligned electrodes are required to control the motion. Electro-
migration has potential for the controlled reversible motion of
nano-objects, whose direction of motion can be simply changed
by switching the direction of electric current.'>'®**% The
motion of a metallic nano-object is along the direction of elec-
tron flow (i.e., opposite to the direction of the electric current)
because the electrons impart momentum to the metal
atoms.”**° Ions are subjected to the electric field and electron
wind forces.
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into two portions inside the nanotube near one of the electrodes.

In our previous study,* we developed a method for deter-
mining the electron wind force and the sliding friction force on
Co nanorod fillers*** inside multi-walled carbon nanotubes
(MWCNTSs).*® The results of the previous study enable us to
control the motion of a Co nanorod filler in a MWCNT. In the
present study, we apply the method of controlled operations of
Co fillers developed in our previous study*® to nano-
engineering. We perform long-stroke continuous linear actu-
ator operations using solid Co nanorod fillers inside and
outside MWCNTs. We conduct in situ transmission electron
microscopy observations of the operations and investigate the
plastic deformation of the Co nanorod fillers during the oper-
ations. In our previous studies,**” operations of Co nanorod
fillers were limited inside MWCNTs. In this study, operations of
Co nanorod fillers are not limited inside host MWCNTSs. Co
nanorod fillers were pushed out of the host MWCNTs and
deformation of the Co nanorod fillers outside the MWCNTSs
were investigated.

2 Experimental

To fabricate MWCNTSs with Co nanorod fillers, we followed the
procedure used in our previous study.*! Briefly, a polycrystalline
alumina substrate with a 30 nm-thick Co deposition layer on its
surface was sealed in an evacuated silica glass tube with 3 mg of
a mixture of graphite, hexadecanoic acid, and saccharin at
a weight ratio of 664 : 86 : 1. The sample was heated at 1100 °C
for 20 min for growth. The grown MWCNTs with Co nanorod
fillers were mounted on an Au wire that served as the ground
electrode for TEM (JEOL JEM-ARM200F) observations at an
accelerating voltage of 200 kV. Results of TEM-based analysis of
a formed nanostructure is provided in ESL.f A W needle was
used as the bias electrode. TEM images were recorded using

© 2025 The Author(s). Published by the Royal Society of Chemistry
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a camera (Gatan Rio16) with a resolution of 1024 x 1024 pixels
at 25 frames per second. A source measure unit (Yokogawa
GS610) was used to apply and measure electric current.

A schematic illustration of the experimental setup for the
electromigration experiments is shown in Fig. 1(a). The W
needle was placed at the middle of a Co nanorod filler to apply
an electric current. The portion of the Co nanorod filler between
its left end and the electric contact with the W needle was forced
to move along the direction of electron flow. No electro-
migration force was applied to the portion of the Co nanorod
filler between its right end and the electric contact because the
electric current did not flow through the right portion. The
direction of the electromigration force can be changed by
changing the polarity.

MWCNT

electrons Co filler

electromigration force W
/7@@0'
Q

Au electrode

| {

Fig. 1 (a) Schematic illustration of experimental setup. (b—f) In situ
TEM images of electromigration manipulation of a Co nanorod filler.
The Co filler was pushed out of the MWCNT to the right by the
electromigration force. The vertical white lines indicate the initial
position of the right end of the Co filler. The arrows indicate bright
images of the Co nanorod formed with a Bragg-reflected wave (ESI
moviet SM1 available).
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3 Results and discussion

An example of the experimental results is shown in Fig. 1(b-f)
and ESI moviet SM1. The outer diameter of the MWCNT was 43
and 35 nm in the middle and at the tip, respectively. The Co
nanorod filler was 14 nm in diameter. Before an electric current
was applied, the position of the right end of the Co filler was
almost the same as that of the right end of the MWCNT and the
MWCNT's right end was open, as shown in Fig. 1(b). When an
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Fig. 2 (a—e) In situ TEM images of electromigration manipulation of
a Co nanorod filler. The Co filler was pushed out of the MWCNT to the
right by the electromigration force. The arrow in (d) indicates a bright
image of the portion of the Co nanorod outside the MWCNT formed
with a Bragg-reflected wave. (f) Plot of current as a function of time
(ESI moviet SM2 available).
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electric current of 0.060 mA was applied, the Co filler moved to
the right and part of it was pushed out of the MWCNT, as shown
in Fig. 1(c).

For the estimation of the current density in the Co filler, we
used the reported values of resistivity, 9.8 x 10~° and 6.24 x
10~® [Ohm m] for graphite (perpendicular to the c-axis) and Co,
respectively. The MWCNT and the Co nanorod filler formed
a simple parallel current divider, therefore the current was
divided into two according to the values of resistivity and the
cross-section areas. The current density in the Co nanorod filler
was estimated to be ca. 0.37 + 0.11 pA nm ™. This high value of
the current density would have been necessary because the Co
nanorod filler was crystalline and the sliding was hampered by
the contacting MWCNT.

During the application of the electric current, the portion
outside the MWCNT became larger and eventually the filler
diameter increased to 35 nm, which is the outer diameter of the
MWCNT at its tip, as shown in Fig. 1(d). With further applica-
tion of the electric current, the thicker portion of the filler
outside the MWCNT became longer along the axis of the
MWCNT while the diameter remained equal to the outer
diameter of the MWCNT [Fig. 1(e) and (f)]. The portion outside
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Paper

the MWCNT was faceted, as shown in Fig. 1(d), and showed
a bright image of the Co nanorod formed with a Bragg-reflected
wave,*® as indicated by the arrows in Fig. 1(e) and (f). This
indicates that the Co nanorod filler was solid during the
process. The facets of the outer portion of the Co nanorod in
Fig. 1(c) were indexed based on shape. The crystal orientation of
the Co nanorod along the MWCNT's axis was [121] and the
viewing direction was [111]. The orientations of the sidewalls of
the Co filler outside the MWCNT were mainly {011}. These low-
index surfaces were parallel to the MWCNT's axis, and thus it is
likely that the increase in diameter stopped. Because the
observation was in only one direction, complete information of
the three-dimensional shape of the Co nanorod was not
obtained.

At the initial stage of the process, the right tip of the MWCNT
was eroded by the Co filler [Fig. 1(c-e)]. This erosion eventually
stopped [Fig. 1(f)]. It is likely that an increase in temperature
due to Joule heating caused this erosion and that the eroded
portion dissolved into the Co filler at high temperature. It is
likely that the erosion stopped because the concentration of C
in the Co nanorod reached the solid solubility limit. The
temperature was below the melting point of Co (1768 K), as

e S i s
P PO SR
i 10.64 s
R h

f@ . “
12.00 s
. ;.*g?“v'éﬂa-m.&-mm‘;m
oA
: :

Fig. 3

-0.05+

T T
0 5 10 15

Time (s)

(a—q) In situ TEM images of electromigration manipulation of a Co nanorod filler. The Co filler was first pushed out of the MWCNT and

then pulled into the MWCNT when the direction of electron flow was reversed. The filler split into two portions at the shoulder. The blue arrow
head in (g) indicates the position of the right end of the left portion. (h) Plot of current as a function of time. The direction of electron flow was

reversed at around 13.0 s (ESI moviet SM3 available).
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evidenced by the Co filler being solid during the process. About
the estimate of the temperature during electromigration
motions, see our previous report.** We speculate the tempera-
ture was below 1000 °C. For more precise estimation of
temperature during the process, many nanoparticles of various
materials with different melting temperatures deposited on the
surface of MWCNTs would be useful; however, those many
nanoparticles would prevent in situ TEM observations.

Fig. 2 and ESI movief SM2 show another example of a Co
nanorod filler being pushed out using the same experimental
setup. The MWCNT and the Co nanorod filler were 27 and
12 nm in diameter, respectively. The electric current was
increased gradually, as shown in Fig. 2(f). As the electric current
was increased, the Co filler was pushed out of the MWCNT
[Fig. 2(b)]. When the electric current was 0.040 mA, the diameter
of the portion of the Co filler outside the MWCNT became larger
than that of the MWCNT, as shown in Fig. 2(c). A further
increase in the electric current resulted in further growth of the
portion of Co outside the MWCNT, as shown in Fig. 2(d) and (e).
Fig. 2(d) and (e) also show the formation of a new electric
contact between the Co filler outside the MWCNT and the W
needle.

As shown in Fig. 2(c), the portion outside the MWCNT was
clearly faceted. The facets were indexed as {011} based on shape.
The direction along the MWCNT's axis was [011]and the viewing
direction was [111]. The crystal orientation of the Co filler in
Fig. 2(c) along the MWCNT's axis is rotated by 30° (or 90°) with
respect to that of the first example show in Fig. 1(d). The portion
of the filler outside the MWCNT showed a bright image of the
Co nanorod formed with a Bragg-reflected wave, as indicated by
the arrow in Fig. 2(d). The faceting and the bright image of the
Co nanorod formed with a Bragg-reflected wave indicate that
the Co filler was solid during the process.

In the first example (Fig. 1), the portion of the Co filler
outside the MWCNT was as thick as the MWCNT, whereas in the
second example (Fig. 2), the portion outside the MWCNT grew
thicker than the host MWCNT. We speculate that this difference
was caused by the difference in crystal orientation between the
two Co crystals. In the first example, the sidewalls of the portion
outside the MWCNT consisted of low-index facets that were
parallel to the axis of the MWCNT, whereas in the second
example, the sidewalls of the portion outside the MWCNT did
not consist of parallel, low-index facets. We confirmed that the
crystal orientations of two portions of a Co nanorod inside and
outside its host MWCNT were the same as shown in ESL.} It is
likely that the initial crystal orientation of a Co nanorod filler
inside the host MWCNT determines its behavior when it is
pushed out of the MWCNT during electromigration motion.
When the sidewalls of a Co nanorod consist of parallel, low-
index facets, the nanorod would maintain its shape when it is
pushed out of the host MWCNT because the low-index facets
have low surface energies. In the other case, a Co nanorod
would change its shape largely forming low-index facets when it
is pushed out of the host MWCNT.

We also performed a push-out/pull-in operation. Fig. 3 and
ESI moviet SM3 show the in situ observation of the push-out/
pull-in operation. A flattened MWCNT mounted on a W

© 2025 The Author(s). Published by the Royal Society of Chemistry
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needle was used as the bias electrode. The MWCNT electrode
allowed clear observation of the operation. The MWCNT and
the Co filler were about 46 and 13 nm in diameter, respectively.
Initially, the Co nanorod filler was located about 140 nm inside
from the open end of the MWCNT [Fig. 3(a)]. When an electric
current was applied, the Co filler was pushed to the right
[Fig. 3(b)]. Then, the right end of the Co filler pushed out of the
MWCNT, increasing in diameter until it matched that of the
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Fig. 4 (a—d) In situ TEM images of electromigration manipulation of
a Co nanorod filler. The Co filler was pushed out of the MWCNT. The
outside portion grew thicker than the diameter of the MWCNT. Then,
the direction of electron flow was reversed. The Co filler split into two
fragments, with the left fragment inside the MWCNT pulled to the left
and the right fragment left outside the MWCNT, unmoved and
unchanged. The black arrow in (c) indicates the location of the frag-
mentation. The white arrow in (d) indicates a bright image of the Co
fragment outside the MWCNT formed with a Bragg-reflected wave. (e)
Plot of current as a function of time. The direction of electron flow was
reversed at around 22.2 s (ESI moviet SM4 available).
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MWCNT [Fig. 3(c)]. The portion outside the MWCNT became
longer, reaching about 110 nm, during the application of the
electric current [Fig. 3(d) and (e)]. This behavior is similar to
that of the first example shown in Fig. 1. Therefore, we speculate
that the crystal orientation of the Co fillers were similar. When
the direction of the electron flow reversed, the Co filler was
pulled in [Fig. 3(f)] and the portion outside the MWCNT became
shorter, reaching about 80 nm. The Co filler split into two
fragments. The left fragment inside the MWCNT was pulled to
the left along the electron flow, whereas the right fragment was
stuck outside [Fig. 3(g)]. During the process, the Co nanorod
filler showed a bright image formed with a Bragg-reflected wave,
which indicates that it was solid. We note that Co fillers were
also solid during electromigration motions inside MWCNTS in
our previous studies.**”

The results of a second trial of the push-out/pull-in operation
are shown in Fig. 4 and ESI moviet SM4. The MWCNT and the
Co filler were about 28 and 13 nm in diameter, respectively. In
this case, the Co filler became thicker than the diameter of the
host MWCNT when it was pushed out, similar to the second
example shown in Fig. 2. It is likely that the low-index facets
were not parallel to the axis of the MWCNT, as was the case for
the example shown in Fig. 2. When the direction of the electron
flow was reversed, the Co filler split into two fragments, with the
left portion inside the MWCNT pulled to the left along the
electron flow and the right portion left outside without
changing its volume. The Co filler showed clear facets and
a bright image formed with a Bragg-reflected wave, which
indicates that it was solid during the process. As shown by this
example, the pull-in operation is not straightforward and it is
likely that the pull-in behavior strongly depends on the crystal
orientation of the Co filler.

4 Conclusions

In conclusion, continuous push-out and pull-in operations of
solid Co nanorod fillers inside and outside MWCNTSs were
realized using electromigration. In situ TEM observations
revealed plastic deformation of the Co nanorod fillers during
these operations. The portion pushed out of the host MWCNT
did not maintain its initial nanorod shape. Its diameter became
as large as or larger than that of the host MWCNT. In some
cases, the increase in diameter was limited to that of the host
MWCNT. 1t is very likely that the crystal orientation of the Co
nanorod filler affects the plastic deformation behavior. The
push-out operation was easy to perform, whereas the pull-in
operation did not always succeed. It appears that the pull-in
operation also depends on the crystal orientation of the Co
nanorod filler. This study demonstrated that Co fillers in
MWCNTs can perform the basic operations of an indenter,
pipette, and linear actuator. The controlled linear operations of
Co fillers in MWCNTs will add unique functionalities to MEMS
systems and facilitate materials science experiments. We also
expect the continuous push-out and pull-in operations of solid
Co nanorod fillers inside and outside MWCNTs would be useful
for fabricating nanoarchitectured functional materials®* by
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using the operations to connect CNTs. We expect the univer-
sality of the observed phenomenon beyond the MWCNTs.
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