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A design framework for metal 3D-printed self-catalytic reactors
(3D SCRs) using stainless steel (STS) has been demonstrated. The
surface functionalization of STS was achieved through a two-step
dealloying process, which is first optimized on metal powder
precursor, and then successfully extended to STS 3D SCRs as a
practical active catalyst for CO, methanation.

Introduction

The development of metal 3D-printed self-catalytic reactors (3D
SCRs) represents a key innovation, combining additive
manufacturing and catalytic systems to overcome challenges in
the chemical engineering field."” The integration of the catalyst
and reactor functions in 3D SCRs facilitates the catalyst
development process, enabling a more direct transition from
laboratory research to industrial implementation.® Moreover, it
allows the fabrication of intricate geometrical configurations
that are not achievable by conventional methods, thereby
improving heat and mass transfer rates within the reactor.”®
This addresses several common issues observed in traditional
packed-bed reactors, including the formation of hot and cold
spots, pressure drops, and reactant maldistribution.®™®

The design of 3D SCRs hinges on two critical factors:
geometric optimization and surface functionalization, both of
which are essential for maximizing catalytic performance.”'® In
the case of geometric optimization, computational fluid
dynamics (CFD) technology facilitates the efficient design of
structures, obviating the necessity for extensive experimental
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trials. On the other hand, the process of surface
functionalization remains a challenge due to the time-
consuming and costly procedure, which involves repeatedly
confirming the surface properties and catalytic activity of 3D-
printed samples. We have previously demonstrated for the first
time that selective electrochemical dissolution is a promising
surface functionalizing strategy to transform an as-printed
reactor using Hastelloy X into an active Ni-based SCR for CO,
methanation.’® However, the lack of standardized
methodologies complicates this challenge, and a more simple
approach is desired.

Hence, in this study, we present a design strategy that
optimizes surface functionalization from the metal powder
precursor to the final 3D SCRs. The use of powdered samples in
the optimization process prior to fabrication of 3D SCRs allows
for a reduction in the time and effort required for sample
preparation and functionalization condition selection. The
versatile stainless steel (STS, Fe-Cr-Ni alloy) was selected for the
CO, methanation reaction, and a two-step dealloying method
was employed for surface functionalization (Scheme 1). To
investigate the relationship between the scan speed and
catalytic activity, STS 3D SCRs were fabricated at two different
laser scan speeds (800 mm s and 1200 mm s™') using gas
atomized (GA) STS316L powder and selective laser melting
(SLM) (Fig. S1f). The details are in the ESLi All resulting
materials were characterized together with a catalytic activity
test, SEM-EDS, XRD, and XPS.

Results and discussion

To prepare the catalyst for CO, methanation, it is essential for
Ni or Ni-Fe species to be exposed on the surface to activate H,
and CO,.'*"" However, the as-produced STS 3D-printed reactors
(3D SCRs) and powder were predominantly covered by a mixture
of inactive Cr and Fe oxides (Fig. S27). To selectively leach Cr
and Fe while preserving active Ni species, hydrothermal
treatment of STS powder in a concentrated caustic soda solution
(50 wt% NaOH) was conducted as an initial step. STS 316L,
containing over 55-60 atomic percent reactive species (Fe and
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Scheme 1 Two-step surface functionalization method of STS metal powder and 3D SCRs.

Cr), meets the geometric parting limit for chemical dealloying,
allowing the retention of noble Ni species in the hot caustic
solution.">"?

The catalytic performance for CO, methanation before and
after the initial hydrothermal treatment is presented in Fig. 1.
Prior to dealloying, the as-printed STS powder exhibited minimal
catalytic activity (~0.1% CO, conversion). After hydrothermal
treatment in 50 wt% NaOH (STS-H220), the powder surface was
dealloyed, achieving a 3.7% CO, conversion. In comparison, a Ni
alloy (Ni-21Cr-18Fe-8Mo at%) that is insufficient for dealloying
due to not meeting the geometric parting limit exhibited 9.1-fold
lower catalytic performance than STS-H220, confirming the
potential of the dealloying process for optimizing catalytic activity
(Fig. S37). Nevertheless, the selectivity of CH, remained low at
16.3%, prompting further refinement treatment.

Hence, as a second step, the dealloyed STS at 220 °C in 50
wt% NaOH (STS-H220) was treated with ammonia solution
(NH,OH) to eliminate residual Fe and Cr oxides and further
expose the active Ni sites for CO, methanation. Among various
NH,OH treatment conditions, a temperature of 80 °C was found
to be optimal and denoted as STS-H220-NH80, yielding a 21.8%
CO, conversion and 92.4% CH, selectivity, with an
improvement of 218 times over the STS raw powder (Fig. 1).
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Fig. 1 CO, methanation performance of STS powder samples before
and after each treatment step. Reaction conditions: T = 300 °C, P = 1
bar, flow rate = 20 mL min™, reaction gas = H,/CO,/N, = 64/16/20.
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Additionally, the catalytic performance of STS-H220-NH80 was
stable even after a 1000 minute long-term test at 300 °C,
highlighting the reliability of this surface functionalization
method (Fig. S41). The minor CO selectivity is attributed to the
residual Fe oxide formed during dealloying and washing
processes (Fig. S57).

Based on the results obtained from the STS metal powder
precursor, the same surface functionalization procedure was
applied to the 3D SCRs. A scan speed of 1200 mm s™* was

STS3DSCRs .
(STS-As-printed)

15t Hydrothermal treatment
(STS-H220)

2" NH,OH treatment
(STS-H220-NH80)

Fig. 2 Photographs and SEM images of STS 3D SCRs before and after each
treatment step. The scan speed for the 3D printing process is 1200 mm s,
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Fig. 3 a) EDS quantification and b) XRD profiles of STS 3D SCRs before and after each treatment step.

utilized for the 3D SCR samples. Fig. 2 illustrated the
uniform color change of the external 3D SCRs before and
after each treatment step, implying surface property
transformation. SEM images show the development of a Ni-
enriched nanoporous structure after the initial hydrothermal
treatment (Fig. 2 and 3a). This nanoporous structure
remained stable after the second NH,OH treatment,
transitioning to a finer morphology with an increase in the
Ni content, reaching 51.6 at% as determined by EDS (Table
S31 and Fig. 3a). XRD analysis showed a significant positive
shift in peaks towards pure nickel after the first and second
dealloying steps (Fig. 3b), supporting the formation of a Ni-
enriched solid solution phase, which is consistent with SEM-
EDS findings."*'" XPS measurements before and after each
treatment confirmed that the surface composition evolved
from being predominantly Cr (33.8 at%) and Fe (62.3 at%),
which are inactive for CO, methanation, towards a Ni-
enriched surface (49.6 at%), containing a mixture of metallic
Ni, Ni(OH),, and NiOOH species (Fig. S21).
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Subsequently, the catalytic activity of dealloyed 3D SCRs
fabricated with a scan speed of 1200 mm s™ (v = 1200-H220-
NH80) was evaluated across a temperature range of 200-400
°C (Fig. 4a). The v = 1200-H220-NH80 3D SCRs demonstrated
high CO, methanation performance, achieving a CO,
conversion rate of 78.5% and CH, selectivity of 99.9% at 350
°C, indicating the successful extension of the insight
obtained in the metal powder optimization process to 3D
SCRs.

Furthermore, the effect of different scan speeds in the 3D
printing process on the catalytic activity of STS 3D SCRs was
investigated after the optimized two-step dealloying process.
The sample fabricated with a scan speed of 1200 mm s (v =
1200-H220-NH80) showed 1.1 to 1.4 times higher catalytic
activity compared to the 800 mm s™* sample (v = 800 H220-
NHS80) (Fig. 4b). This difference is attributed to the influence
of the scan speed, which is directly linked to the energy
density of the scanning conditions (Table S2t). This energy
density difference leads to variations in the crystal texture of
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Fig. 4 a) Temperature-dependent CO, conversion with v = 1200-H220-NH80 and b) CO, methanation performance with different scan speeds.
Reaction conditions: P = 1 bar, flow rate = 20 mL min™%, reaction gas = H>/CO,/N, = 64/16/20.
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the 3D-printed samples. The sample printed at v = 1200, with
a lower laser energy density compared to v = 800, is expected
to form finer grains, facilitating the dealloying of STS by
increasing the number of active sites on the grains.'>"”

Conclusions

In conclusion, STS 3D self-catalytic reactors (STS 3D SCRs)
successfully developed by extending the insight
obtained with metal powder precursors to functional 3D-
printed reactors. The two-step dealloying process, initially
optimized using the metal powder, was effectively applied to
the 3D SCRs, resulting in the significant enhancement of
CO, methanation performance through the transformation of
the STS surface into Ni-enriched species. Additionally, the
influence of the scan speed on catalytic activity was
demonstrated, highlighting the need for further detailed
investigations to elucidate the relationship between the scan
speed and 3D SCR performance optimization. This work
presents a novel approach to designing 3D SCRs, offering a
method that reduces both time and costs in the development
process. Further studies for the effect of geometric structures
and differences in the crystallographic texture properties
induced by the different scan strategies are now under
investigation.
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